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The foundation of modern vaccinology dates back to the 
1790s, when the English physician Edward Jenner uncovered 
the tremendous medical potential of prophylactic vaccination. 
Jenner’s work ignited a wave of nationwide vaccination 
campaigns abating the incidence of multiple life-threatening 
infectious diseases and culminating with the eradication of 
natural smallpox virus, which was definitively certified by the 
WHO in 1980. The possibility of using vaccines against cancer 
was first proposed at the end of the 19th century by Paul Ehrlich 
and William Coley. However, it was not until the 1990s that such 
a hypothesis began to be intensively investigated, following 
the realization that the immune system is not completely 
unresponsive to tumors and that neoplastic cells express 
immunogenic tumor-associated antigens (TAAs). Nowadays, 
anticancer vaccines are rapidly moving from the bench to the 
bedside, and a few prophylactic and therapeutic preparations 
have already been approved by FDA for use in humans. In 
this setting, one interesting approach is constituted by DNA 
vaccines, i.e., TAA-encoding circularized DNA constructs, 
often of bacterial origin, that are delivered to patients as such 
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Introduction

Historical perspective. In 1980, the WHO officially certified 
the eradication of natural smallpox infection,1 representing one 
of the major medical triumphs of history. Such an achievement 
de facto originated from a series of nationwide vaccination cam-
paigns that were launched throughout the 18th and 19th centuries 
following the pioneering work of the English physician Edward 
Anthony Jenner (1749–1823).2,3 In the 1790s, Jenner demon-
strated indeed that a sublethal smallpox (or cowpox) infection can 
confer complete protection against subsequent, potentially lethal, 
exposures,2,3 establishing the foundations of modern vaccinology. 

or by means of specific vectors, including (but not limited to) 
liposomal preparations, nanoparticles, bacteria and viruses. 
The administration of DNA vaccines is most often performed 
via the intramuscular or subcutaneous route and is expected 
to cause (1) the endogenous synthesis of the TAA by myocytes 
and/or resident antigen-presenting cells; (2) the presentation 
of TAA-derived peptides on the cell surface, in association with 
MHC Class I molecules; and (3) the activation of potentially 
therapeutic tumor-specific immune responses. In this Trial 
Watch, we will summarize the results of recent clinical trials that 
have evaluated/are evaluating DNA vaccines as therapeutic 
interventions against cancer.
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counterparts, and that (2) at least under selected circumstances, 
the immune system de facto reacts against neoplastic cells; 
though in the vast majority of cases such responses are unable to 
control tumor growth.18

Anticancer vaccines. Within the conceptual framework 
provided by Polly Matzinger’s danger theory,12 the discovery 
of MZ2-E, nowadays known as melanoma-associated antigen 
(MAGE)-A1, ignited an intense experimental effort, not only 
resulting in the identification and characterization of hundreds 
of additional TAAs, but also generating further insights into the 
mechanisms whereby TAAs, at least in some settings, can break 
tolerance and elicit an adaptive immune response.19–21 For didac-
tic purposes, TAAs can be classified into four distinct classes: 
(1) truly exogenous, non-self TAAs (which are invariably of 
viral origin); (2) unique, mutated TAAs (stemming from cancer 
cell-specific genetic alterations); (3) idiotypic TAAs (reflecting 
the unique way whereby the B-cell receptor expressed by some 
clonal hematopoietic malignancies is rearranged); and (4) shared 
TAAs (which are also expressed by normal cells, though often to 
lower levels). A detailed discussion of the properties of these four 
groups of TAAs largely exceeds the scope of this Trial Watch and 
can be found in ref. 22.

As soon as the first TAAs were characterized, great efforts 
have been dedicated to the development of anticancer vaccines, 
resulting in a wealth of different approaches including cell-based 
strategies (most often involving the loading of autologous DCs 
with tumor material ex vivo, followed by their re-administration 
to patients),23 recombinant vaccines (entailing the direct admin-
istration of purified TAAs or TAA-derived peptides)22 and DNA 
vaccines. The results of such an intense wave of research and 
development have been very encouraging. However, to date only 
three vaccines have been approved by FDA for use in humans: 
Cervarix® and Gardasil®, de facto constituting preventive mea-
sures against infection by human papillomavirus (HPV)-16 
and HPV-18 and the consequent development of cervical carci-
noma,24,25 and sipuleucel-T (also known as Provenge®), a cellular 
preparation for the therapy of asymptomatic or minimally symp-
tomatic metastatic hormone-refractory prostate cancer.26 This is 
in stark contrast with the huge number of vaccines that have been 
developed and commercialized during the last century for the 
prophylaxis of infectious diseases, and may stem from several rea-
sons including (but not limited to): (1) the antigenic properties of 
malignant cells, (2) the fact that anticancer vaccines must oper-
ate in the vast majority of settings as therapeutic—rather than 
prophylactic—interventions and (3) the existence of multiple 
immunosuppressive mechanisms that are activated by malignant 
cells, both in the tumor microenvironment and systemically. A 
detailed discussion of these points exceeds the scope of this Trial 
Watch and can be found in ref. 22.

Anticancer gene therapy. Along with the recognition of the 
potential of recombinant DNA technologies, great efforts have 
been dedicated to the development of constructs that would drive 
the whole-body or tissue-specific expression of therapeutic genes, 
as well as of vectors and administration protocols that would allow 
for the efficient delivery of such constructs to patients.27 Starting 
in the late 1990s, this intense wave of investigation generated a 

In fact, the term “vaccination” (derived from the Latin adjec-
tive vaccinae, which means “pertaining to cows, from cow”) was 
coined by Jenner himself for the procedure he had conceived to 
prevent smallpox, and was given a more general meaning by the 
French microbiologist Louis Pasteur (1822–1895), another cen-
tral figure in the history of vaccination, only 50 years later.4,5 The 
development and widespread administration of efficient prophy-
lactic vaccines not only has resulted in the eradication of natural 
smallpox,1 but also has strikingly abated the incidence of a large 
panel of life-threatening infectious diseases including (but not 
limited to) rabies, typhoid, cholera, measles, plague, chickenpox, 
mumps, poliomyelitis and hepatitis B.4

One century after Jenner’s work, the German physician Paul 
Ehrlich (1854–1915) and the American surgeon William Bradley 
Coley (1862–1936) were the first to propose that vaccination 
might be successfully employed against cancer.4 In fact, Ehrlich 
(who is best known for the concept of a “magic bullet” that would 
specifically kill malignant cells) failed in his attempts to formally 
demonstrate that weakened cancer cells may generate antitumor 
immunity.4 Conversely, Coley developed a mixture of heat-killed 
bacteria (best known as the Coley toxin) that mediates potent 
antitumor effects,6,7 although it does so by operating as an adju-
vant, hence stimulating the maturation of dendritic cells (DCs) 
via Toll-like receptor (TLR)-transduced signals,8 rather than as 
a bona fide vaccine. Of note, the Coley toxin has been commer-
cially available and administered to cancer patients until the early 
1960s, when its use was discontinued following concerns raised 
by the thalidomide case.9

Unfortunately, the hypotheses of Ehrlich and Coley have been 
disregarded for about one century and have generated renovated 
enthusiasm only recently.10 One of the major theoretical hur-
dles against the development of anticancer vaccines (and, more 
in general, against the affirmation of tumor immunology as a 
self-standing discipline) was represented by the “self/non-self” 
dichotomy, as originally theorized by the Australian virologist 
Sir Frank Macfarlane Burnet (1899–1985) in 1949.11 According 
to this model, tumors—as they constitute self tissues—are non-
immunogenic and hence completely insensitive to immunothera-
peutic interventions.11 It took more than 45 years for an alternative 
model that globally explains the modus operandi of the immune 
system to be formulated. Indeed, in 1994, the American scientist 
Polly Matzinger proposed that the immune system would not 
simply recognize and react to non-self constituents but would 
rather be activated by situations of danger, be them of exoge-
nous (non-self) or endogenous (self) origin.12 Thus, conditions 
that have long been viewed as immunologically silent, includ-
ing trauma and cancer, are de facto capable of activating the 
immune system, a concept that is nowadays widely accepted.13–15 
Approximately in the same years, (1) the gene coding for MZ2-
E, a protein expressed by malignant cells of diverse histological 
origin but not by a series of normal tissues, was cloned;16 and (2) 
cytotoxic T lymphocytes (CTLs) specifically recognizing neo-
plastic cells in vitro were isolated from patients bearing a vari-
ety of tumors,16,17 lending further support to the notions that (1) 
malignant cells express immunogenic tumor-associated antigens 
(TAAs), whereby they can be discriminated from their normal 
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been proposed to constitute a major route for the activation of 
immune responses by DNA vaccines even in settings in which 
direct presentation can occur, for instance upon the direct deliv-
ery of naked DNA to Langerhans cells by gene gun.85

As compared with cell-based and recombinant preparations, 
DNA vaccines are advantageous in that (1) they can be generated 
in large amounts and with clinical grade purity in a relatively 
inexpensive and rapid fashion;79–81,86 (2) they are highly stable 
(that is, they are relatively insensitive to temperature and have 
a long shelf life);79–81,86 (3) they are safe, based on experience 
accumulated in more than one hundred clinical trials completed 
to date;79–81,86 (4) the presence of bacterial sequences, notably 
unmethylated CpG islands, in the DNA backbone operates per 
se as an adjuvant, stimulating the activation of TLR9;87 (5) they 
can be engineered either for the expression of TAAs fused to non-
self proteins that exert adjuvant effects, such as the fragment C 
of the tetanus toxin,88 Pseudomonas aeruginosa exotoxin,89 the 
potato virus X coat protein90 and green fluorescent protein,91 or 
for the co-expression of other immunostimulatory factors, such 
as the heat shock 70 KDa protein (HSP70)92,93 and various cyto-
kines, including IL-2, IL-12 and GM-CSF;93–95 (6) they can be 
engineered so to alter the intracellular routing of TAAs, result-
ing in the preferential activation of humoral (when TAAs are 
targeted to the endoplasmic reticulum) or cellular (if TAAs are 
targeted to the cytosol or—even more specifically—to the prote-
asome) immunity;96,97 and (7) they can induce very robust T-cell 
responses (leading to the elimination of APCs at boosting) even 
if the amounts of TAA produced in situ is minimal.79 However, 
the efficacy of DNA vaccines is influenced—at least in part—by 
the achievement of high transfection rates in vivo, raising the 
need of efficient vectors and administration protocols.

Vectors. Although the use of naked DNA constructs (at least 
in some circumstances) has been associated with acceptable 
transfection rates and the elicitation of TAA-specific immune 
responses, great efforts have recently been dedicated to the opti-
mization of specific vectors for DNA vaccines.79–81,86 The deliv-
ery of TAA-coding genes by lentiviral, adenoviral, retroviral and 
adeno-associated vectors perhaps constitutes the most investi-
gated approach in this sense, offering high levels of transduc-
tion efficiency as well as a relatively stable and protracted TAA 
production.98,99 However, these advantages are largely overcome 
by the facts that (1) viral packaging proteins are immunogenic 
and elicit potent anti-vector immune responses, de facto pre-
cluding the possibility of efficient boosting in prime-boosting 
settings, and (2) viral vectors are expensive, cannot host large 
transgenes, have been associated with toxic side effects and are 
potentially at risk for insertional mutagenesis.33,98,99 Bacterial 
and eukaryotic vehicles have been proposed as an alternative to 
viral vectors, including genetically modified, attenuated strains 
of Salmonella typhimurium, Pichia pastoris and Saccharomyces 
cerevisiae.100–104 In general, these systems are advantageous as 
they are compatible with oral administration, resulting in TAA 
expression by splenic APCs104,105 or in the induction of potent 
mucosal immune responses,101 and as multiple bacterial products 
like lipopolysaccharide (LPS), diacyl lipopeptides, flagellin and 
bacterial DNA —at least potentially—operate as adjuvants by 

considerable number of Phase I–II clinical trials testing whether 
preclinical observations could be safely and efficacy translated 
from the bench to the bedside.28–30 Indeed, especially in the case 
of monogenic diseases affecting a relatively accessible cell com-
partment, such as severe immunodeficiency syndromes caused by 
the lack of adenosine deaminase (ADA) or the γ chain common 
to multiple cytokine receptors, gene therapy initially appeared 
to constitute a relatively safe and highly efficient therapeutic 
option.31,32 Unfortunately, a few years later the use of retroviral 
vectors for gene therapy was associated with an increased risk for 
insertional mutagenesis, de facto abating the general enthusiasm 
about this therapeutic approach.33 In the same period, the first 
clinical trials investigating the possibility to employ gene therapy 
as an anticancer intervention were concluded.34–40 These studies 
were based on at least three distinct approaches, which continue 
to be actively investigated nowadays: (1) the selective delivery to 
malignant cells of genes coding for self-sufficient cytotoxic fac-
tors, such as the oncosuppressor protein p53,35,41–43 a cytocydal 
variant of cyclin G1,44 the adenovirus 5 E1A protein (which de 
facto functions as an oncosuppressor in breast cancer cells)36,40,45,46 
and the diphtheria toxin,47,48 or enzymes that convert inactive 
drug precursors into poisonous chemicals, like the herpes sim-
plex virus thymidine kinase (which can transform gangiclovir 
into a lethal triphosphate derivative)49–53 and cytosine deaminase 
(which can convert 5-fluorocytosine into 5-fluorouracil);54 (2) the 
(most often intratumoral) administration of plasmids coding for 
relatively unspecific immunostimulatory factors, including, but 
not limited to, interleukin (IL)-2,44,55–58 IL-12,59–63 interferon γ 
(IFNγ),64–66 granulocyte-macrophage colony-stimulating factor 
(GM-CSF),67 CD40 ligand (CD40L)68,69 and the MHC Class I 
molecule HLA-B7;38,39,70–76 and (3) bona fide DNA vaccines. Of 
note, none of these gene therapy-based approaches is currently 
approved by US. FDA for use in cancer patients, yet gendicine, a 
recombinant adenovirus engineered to express wild-type p53, has 
been licensed for the treatment of subjects affected by head and 
neck squamous cell carcinoma in China as early as in 2003.77,78

DNA vaccines. DNA vaccines consist in circular DNA con-
structs (near-to-invariably derived from bacterial plasmids) that 
encode one or more TAA(s),79–81 and their use in humans de 
facto represents a particular case of gene therapy. These vaccines 
are administered subcutaneously or intramuscularly in the form 
of naked DNA or within appropriate delivery vectors, result-
ing in their uptake by resident antigen-presenting cells (APCs), 
mainly DCs and/or myocytes and local TAA expression. In both 
scenarios, intracellular TAAs are processed and presented on 
MHC Class I molecules to TAA-specific T cells (direct presenta-
tion). However, whereas professional APCs are very efficient at 
direct presentation, myocytes generally are not, as they express 
detectable yet rather low levels of MHC Class I and co-stimu-
latory molecules.81,82 Thus, the induction of robust antitumor 
immunity following the expression of TAAs by myocytes must 
proceed via cross-presentation, the process whereby APCs take 
up exogenous material (most often apoptotic debris), process it 
and eventually present it in association with MHC Class I (rather 
than Class II) molecules, eventually resulting in the elicitation 
of CD8+ T-cell responses.81,83,84 Of note, cross-presentation has 
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remain within acceptable levels.133 As it stands, electroporation 
constitutes the delivery method for DNA vaccines best suited 
for clinical applications; though ever more encouraging results 
are being obtained with preparation that exploit the oral route, 
including bacterial and eukaryotic vectors.121,134

Along the lines of our monthly Trial Watch series,6,7,22,23,135–142 
here we will briefly discuss the results of recent clinical trials that 
have investigated/are investigating the antineoplastic potential of 
DNA vaccines. As mentioned above, no DNA-based preparation 
is approved by FDA for use in cancer patients as a prophylactic or 
immunotherapeutic intervention to date (source www.fda.gov). 
Conversely, three distinct DNA vaccines have been licensed for 
veterinary use, including one for the prophylaxis of West Nile 
virus in horses,143 one for the prophylaxis of infectious hemato-
poietic necrosis virus (IHNV) in salmonid fish144,145 and one for 
the therapy of malignant melanoma in dogs.146 Intriguingly, the 
latter relies on the expression of a xenogenous TAA (i.e., human 
tyrosinase), resulting in the breakdown of tolerance against the 
endogenous protein and hence in the development of an efficient 
humoral response that significantly prolongs the overall survival 
of melanoma-bearing dogs.147

Naked DNA-Based Anticancer Vaccines

So far, the safety and efficacy of naked DNA vaccines have been 
evaluated in a relatively restricted number of clinical settings. In 
particular, constructs coding for autogenic TAAs or allogeneic 
factors that would exert cross-immunizing functions have been 
tested in cohorts of B-cell lymphoma patients (TAA: idiotypic 
B-cell receptor regions),148 head and neck cancer (HNC) patients 
(immunogen: Mycobacterium leprae HSP65),149 melanoma 
patients (TAAs: gp100, MART-1-derived peptides, tyrosinase or 
tyrosinase-derived peptides),150–156 colorectal carcinoma patients 
(TAA: carcinoembryonic antigen, CEA),157 HPV-16+ cervical 
intraepithelial neoplasia (CIN) patients (TAA: HPV-16 E6)92 
and individuals affected by prostate carcinoma (TAA: prostate-
specific antigen, PSA).158,159 The results of these studies (all of 
which were conducted in a Phase I clinical setting) suggest that 
the intramuscular, intratumoral and intranodal administration 
of naked DNA vaccines to cancer patients is safe and can elicit 
TAA-specific immune responses that—at in least in a fraction of 
patients—exert bona fide therapeutic effects.

Nowadays (January 2013), official sources list 15 recent 
(started after January 1, 2008), ongoing (not withdrawn, ter-
minated or completed at the day of submission) clinical trials 
assessing the safety and efficacy of naked DNA-based vaccines as 
therapeutic interventions against cancer (Table 1). Five of these 
studies are investigating the therapeutic potential of constructs 
encoding the E6 and/or E7 proteins of HPV variants that are 
associated with an increased risk for HNC, cervical cancer and 
anal carcinoma (i.e., HPV-16 and HPV-18)24,160 either (1) as a 
plasmid co-encoding the immunostimulatory protein FLT3 
ligand, administered i.m. via electroporation, in patients affected 
by grade 3 CIN (NCT01634503); (2) as a construct co-encod-
ing the immunostimulatory protein calreticulin (CRT),112,161,162 
administered as a standalone agent i.m., s.c. or i.t., in subjects 

activating various TLRs.6,7,87,106 This said and in spite of promis-
ing preclinical results, currently available bacterial and eukary-
otic vectors are generally perceived as insufficiently mature for 
clinical applications;79–81,86 although a few clinical trials to test 
their anticancer potential have been launched (see below). Other 
vectors including liposomes, microparticles, nanoparticles and 
peculiar polymers are under investigation as a means to increase 
the transfection rate of DNA vaccines and their immunogenic-
ity, with encouraging results.107,108 Nevertheless, the vast major-
ity of clinical trials ever launched to date for evaluating the 
antineoplastic potential of DNA vaccines has been based on 
naked DNA.79–81,86

Delivery methods. Preclinical and clinical data collected dur-
ing the last two decades demonstrate that the administration 
route constitutes a critical determinant for the efficacy of DNA 
vaccines.79,81,86,109,110 Intramuscular injections were commonly 
employed during early tests with large animals and humans, 
resulting in relatively poor efficacy. In retrospective, this could 
have been predicted, as the efficacy of DNA vaccines adminis-
tered i.m. strictly depends on the injected volume.79,81 Thus, while 
the intramuscular administration of a DNA vaccine in 50 μL 
vehicle results in the elicitation of robust immune responses in 
mice, efficacy is gradually lost along with the decrease in injec-
tion volumes.111 Presumably, this stems from the fact that a 
high hydrostatic pressure not only augments the uptake of the 
DNA vaccine by myocytes and resident APCs (de facto increas-
ing transfection efficacy) but also promotes (a limited degree 
of) tissue damage, resulting in the release of danger signals that 
(1) attract additional APCs and other immune cells to the injec-
tion sites and (2) provide immunostimulatory signals via TLRs 
and other pattern recognition receptors.6,7,15,112–115 Unfortunately, 
scaling this volume up for the intramuscular administration of 
DNA vaccines to humans is unfeasible, raising the need for alter-
native delivery routes. In this sense, several options have been 
investigated during the last two decades, including (but not lim-
ited to) gene gun-mediated delivery,108,116 jet injection117,118 and 
tattooing,119 all of which involve the skin route, oral delivery120–122 
and electroporation.116,123–125 Of note, although most (if not all) of 
these strategies have already entered the clinical phase of develop-
ment, nowadays electroporation has emerged as a preferred and 
efficient delivery method.126

Electroporation consists in the electrical stimulation of a 
skeletal muscle immediately after the intramuscular delivery of 
naked DNA.127–129 De facto, electroporation is associated with 
(1) a consistent increase in transfection efficiency and (2) local 
tissue injury, resulting in the release of danger signals by dying 
myocytes, the recruitment of immune cells and the establishment 
of a pro-inflammatory milieu that stimulates robust humoral and 
cellular immune responses.124,130–132 Of note, the efficacy of DNA 
vaccines administered via electroporation is not compromised by 
the use of low injection volumes.111,125 Moreover, although gener-
ally perceived as uncomfortable, repeated electroporation appears 
to cause no major side effects and is accepted by patients with 
no need for anesthetic procedures.79,81 Finally, although increased 
transfection efficiencies as achieved with electroporation elevate 
the risk of (potentially oncogenic) integration, this appears to 



www.landesbioscience.com OncoImmunology e23803-5

by breast carcinoma cells),167 administered i.m. as a standalone 
intervention, in women affected by metastatic breast carcinoma 
(NCT00807781); (3) one is testing a CEA-coding plasmid,168,169 
delivered s.c. via electroporation as a standalone agent or com-
bined with GM-CSF s.c. and cyclophosphamide i.v., in colorectal 
carcinoma patients (NCT01064375); (4) one is evaluating the 
therapeutic profile of a prime-boost strategy based on a construct 
encoding the common TAA α fetoprotein (AFP),170 adminis-
tered i.m. together with a GM-CSF-coding plasmid (prime) 
and an AFP-expressing adenoviral vector given i.m. (boost), in 
hepatocellular carcinoma patients (NCT00669136); (5) one is 
assessing the safety and efficacy of a plasmid coding for patient-
specific, lymphoma-derived single-chain variable fragments 
(idiotypic vaccination)22,171 fused to a not-better specified chemo-
kine, administered i.m. as a standalone intervention, in subjects 

affected by grade 2/3 CIN (NCT00988559), or delivered i.m. 
via electroporation in combination with the immunostimula-
tory drug cyclophosphamide i.v.13,112,136,142 to HNC patients 
(NCT01493154); (3) as a plasmid co-encoding the immunos-
timulatory factor HSP70,112,163 administered i.m. together with 
a viral vector coding for the same TAAs and topical imiqui-
mod6,7,164 to women bearing grade 3 CIN (NCT00788164); 
or (4) delivered i.m. via electroporation to patients affected by 
grade 2/3 CIN (NCT01304524). Of the remaining 10 studies, 
(1) three are evaluating the safety and efficacy of a construct cod-
ing for prostate acid phosphatase (PAP),165,166 administered s.c. in 
combination with sipuleucel-T and/or GM-CSF to prostate can-
cer patients (NCT00849121; NCT01341652; NCT01706458); 
(2) one is investigating the clinical profile of a plasmid coding 
for mammaglobin A (a secretoglobin that is often overexpressed 

Table 1. Clinical trials testing naked DNA-based vaccines as therapeutic interventions against cancer*

Vector Indication Phase Status TAA
Co-encoded 
molecule(s)

Co-therapy
Delivery 

route
Ref.

Mixed

CIN I Recruiting HPV-16 E6/E7 HSP70
E6/E7-coding virus

Imiquimod
i.m. NCT00788164

HCC I-II Recruiting AFP –
AFP-coding virus

GM-CSF-coding plasmid
i.m. NCT00669136

Naked DNA

Breast cancer I Recruiting SCGB2A2 – – i.m. NCT00807781

CIN

I Recruiting HPV-16 E6/ E7 FLT3L – i.m. + EP NCT01634503

II Recruiting
HPV-16 E6/ E7

HPV-18 E6/ E7
– – i.m. + EP NCT01304524

n.a. Recruiting HPV-16 E7 CRT –

i.m.

s.c.

i.t.

NCT00988559

CRC I-II
Active, not 
recruiting

CEA –
CPA

rGM-CSF
s.c. + EP NCT01064375

HNC I Recruiting HPV-16 E7 CRT CPA i.m. + EP NCT01493154

Lymphoma I
Not yet

recruiting
Idiotype

Chemokine

(fusion)
– i.m. NCT01209871

Melanoma I-II Recruiting TRP2
Antibody

(fusion)
– i.m. + EP NCT01138410

Ovarian cancer I Recruiting IGFBP-2 – – s.c. NCT01322802

Prostate cancer

I-II Unknown PSA – – s.c. + EP NCT00859729

II
Active, not 
recruiting

PAP – rGM-CSF s.c. NCT00849121

II Recruiting PAP – rGM-CSF s.c. NCT01341652

II Recruiting PAP –
rGM-CSF

sipuleucel-T
s.c. NCT01706458

AFP, α fetoprotein; CEA, carcinoembryonic antigen; CIN, cervical intraepithelial neoplasia; CRC, colorectal carcinoma; CRT, calreticulin; 
CPA, cyclophosphamide; EP, electroporation; FLT3L, FLT3 ligand; GM-CSF, granulocyte-macrophage colony stimulating factor; HCC, hepatocellular 
carcinoma; HNC, head and neck cancer; HPV, human papillomavirus; HSP70, heat shock 70 KDa protein; IGFBP-2, insulin-like growth factor binding 
protein 2; i.m., intra musculum; i.t., intra tumorem; n.a., not available; SCGB2A2, mammaglobin A; PAP, prostate acid phosphatase; PSA, prostate-
specific antigen; r, recombinant; s.c., sub cutem; TAA, tumor-associated antigen; TRP2, tyrosinase-related protein 2. *Started after January 1, 2008 and 
not withdrawn, terminated or completed at the day of submission.
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vectors (1) either expressing HPV-16 E6 and E7 and co-admin-
istered i.m. with a naked plasmid coding for the same TAAs 
plus HSP70112,163 and topical imiquimod6,7,164 to women affected 
by grade 3 CIN (NCT00788164);92 (2) either coding for the 
breast cancer-associated TAA v-erb-b2 erythroblastic leukemia 
viral oncogene homolog 2 (ERBB2, best known as HER2)188–191 
and delivered s.c. as a standalone intervention following adju-
vant chemotherapy to individuals affected by ERBB2+ breast 
cancer (NCT01152398); (3) either encoding both PAP165,166 and 
PSA178 and administered s.c. to androgen-insensitive prostate 
cancer patients (NCT00629057); (4) either coding for two anti-
gens of the Epstein-Barr virus (i.e., EBNA1, LMP2), which is 
associated with a fraction of HNC cases,192,193 and delivered s.c. 
to nasopharyngeal cancer patients with residual viral load after 
conventional therapy (NCT01094405); (5) either encoding 
p53,41,42,194 which is frequently overexpressed by a wide variety of 
neoplasms as a result of inactivating TP53 mutations,195–199 and 
administered s.c. to subjects affected by gastric, pancreatic or 
colorectal carcinoma (NCT01191684); (6) or coding for mucin 
1 (MUC1)200 plus IL-2 (TG4010)201 and delivered s.c. in com-
bination with conventional chemotherapeutic regimens to Stage 
IV NSCLC patients (NCT01383148). In addition, (1) three 
studies are assessing the therapeutic profile of the co-admin-
istration of fowlpox virus- and vaccinia virus-derived vectors, 
either coding for PSA178 plus three T-cell co-stimulatory mole-
cules (TRICOM)202,203 and delivered s.c. in association with the 
microtubular poison docetaxel plus prednisone to metastatic, 
hormone-resistant prostate cancer patients (NCT01145508), 
either coding for PSA178 plus TRICOM202,203 and delivered 
together with GM-CSF to subjects affected by metastatic, cas-
tration-resistant prostate cancer (NCT01322490), or coding for 
CEA168,169 plus MUC1200 and delivered i.t. and s.c. in combi-
nation with GM-CSF to individuals bearing unresectable pan-
creatic carcinoma (NCT00669734); (2) two trials are testing 
adenoviral vectors, either encoding AFP170 and delivered i.m. as a 
boosting strategy following the intramuscular co-administration 
of AFP- and GM-CSF-coding plasmids (prime) to hepatocellu-
lar carcinoma patients (NCT00669136), or coding for CEA168,169 
(ETBX-011) and administered s.c. as a standalone intervention 
to patients affected by advanced CEA-expressing breast, lung 
and colorectal carcinoma (NCT01147965); and (3) one study is 
investigating the therapeutic potential of a live attenuated strain 
of the Measles virus (Attenuvax®) delivered s.c. as a single agent 
to Stage IIIB/IV, Measles virus-positive NSCLC patients204,205 
(NCT00828022). Of note, only two of these approaches are in 
a relatively advanced stage of clinical development and are tested 
in Phase III settings (NCT01322490; NCT01383148), i.e., 
(1) the subcutaneous co-administration of fowlpox virus- and 
vaccinia virus-derived vectors coding for PSA plus TRICOM 
in combination with recombinant GM-CSF (for the treatment 
of prostate cancer); and (2) the subcutaneous delivery of an 
MVA-derived vector encoding MUC1 plus IL-2 in combination 
with conventional chemotherapy (for the treatment of NSCLC) 
(Table 2). Future will tell whether either of these strategies will 
become the first therapeutic DNA vaccine to be approved by 
FDA for use in cancer patients.

affected by lymphoplasmacytic lymphoma (NCT01209871); 
(6) one is investigating the therapeutic potential of a construct 
that encodes a tyrosinase-related protein 2 (TRP2) epitope fused 
to a modified monoclonal antibody targeting the chimera to 
DCs,172,173 delivered i.m. via electroporation as a standalone inter-
vention to melanoma patients (NCT01138410); (7) one is test-
ing a plasmid coding for residues 1–163 of insulin-like growth 
factor binding protein 2 (IGFBP-2),174,175 administered s.c. as a 
single agent, in patients affected by Stage III-IV ovarian cancer 
(NCT01322802); and (8) one is assessing the safety and effi-
cacy of a construct coding for Macaca mulatta PSA, which is 
highly homologous to its human counterpart,176–178 delivered s.c. 
via electroporation to patients bearing relapsed prostate cancer 
(NCT00859729). Of note, all these naked DNA-based vaccina-
tion strategies are currently being tested in Phase I-II clinical set-
tings (Table 1).

Vector-Based Anticancer Vaccines

Similar to the case of naked DNA vaccines, the safety and thera-
peutic potential of vector-based anticancer vaccines have been 
investigated in a relatively low number of clinical scenarios. In 
particular, the oral administration of bacterial vectors has only 
been tested in a cohort of pancreatic cancer patients (TAA: 
vascular endothelial growth factor receptor 2, VEGFR2);121,179 
adenoviral or poxviral vectors (given i.m. or s.c.) have been 
evaluated in cohorts of non-small cell lung carcinoma (NSCLC) 
patients (TAA: L523S),180 melanoma patients (TAA: multiple 
epitopes from distinct melanoma antigens)150,181 and prostate 
carcinoma patients (TAAs: prostate-specific membrane anti-
gen, PSMA);182,183 and biodegradable polymeric materials have 
been tested in cohorts of anal dysplasia patients (TAA: HPV-16 
E7),184 CIN patients (TAAs: HPV-16 E6/E7)185 and individuals 
bearing advanced solid tumors (TAA: cytochrome P450 1B1).186 
Cumulatively, these clinical trials reported a very low incidence 
of (near-to-invariably) mild side effects, as well as the develop-
ment of TAA-specific immune responses that, at least in a subset 
of patients, translated into a clinical benefit.

Today (January 2013), official sources list 17 recent, ongoing 
clinical trials investigating the therapeutic potential of vector-
based DNA vaccines in cancer patients (Table 2). Five of these 
studies are based on bacterial vectors, as (1) four are testing a 
live attenuated variant of Listeria monocytogenes engineered to 
express E7 from HPV-16 (ADXS11-001),187 delivered i.v. either 
as a standalone intervention to individuals affected by grade 2/3 
CIN (NCT01116245), persistent/recurrent cervical carcinoma 
(NCT01266460) and oropharyngeal cancer (NCT01598792), 
or in combination with 5-fluorouracil, mitomycin and inten-
sity-modulated radiation therapy to anal carcinoma patients 
(NCT01671488); and (2) one is assessing the safety and effi-
cacy of an attenuated strain of Salmonella typhimurium encoding 
VEGFR2 (VXM01),121,179 administered p.o. to patients affected 
by locally advanced, inoperable Stage IV pancreatic cancer 
(NCT01486329). Of the remaining 12 studies, all involving 
(at least in part) viral delivery systems, six are testing Vaccinia 
virus- or Modified Vaccinia Ankara (MVA) virus-derived 
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technology, also linked to the fact that three distinct DNA-based 
preparations (of which one is employed in a therapeutic—as 
opposed to prophylactic—setting) have already been licensed for 
veterinary use.80

DNA vaccines offer great possibilities in that they can be engi-
neered (1) so to express not only the TAA(s) of choice but also 
immunostimulatory molecules, including cytokines and xenog-
enous proteins that operate as adjuvants;88–95 and (2) so that the 

Concluding Remarks

Preclinical and clinical evidence accumulated during the last two 
decades indicates that DNA vaccines have the potential to induce 
tumor-specific immune responses that—at least in a fraction of 
patients—may translate into a therapeutic benefit.79–81,86 Thus, 
although no DNA vaccines are currently approved by FDA for 
use in cancer patients, great expectations are reposited on this 

Table 2. Clinical trials testing vector-based DNA vaccines as therapeutic interventions against cancer*

Vector Indication(s) Phase Status TAA
Co-encoded 
molecule(s)

Co-therapy
Delivery 

route
Ref.

Adenovirus

Breast cancer

CRC

Lung cancer

I-II
Active, not 
recruiting

CEA – – s.c. NCT01147965

Fowlpox virus

Vaccinia virus

Pancreatic cancer I Recruiting
CEA

MUC1
– rGM-CSF

s.c.

i.t.
NCT00669734

Prostate cancer
II

Active, not 
recruiting

PSA TRICOM
Docetaxel

Prednisone
s.c. NCT01145508

III Recruiting PSA TRICOM rGM-CSF n.a. NCT01322490

Listeria  
monocytogenes

Anal cancer I-II
Not yet 

recruiting
HPV-16 E7 –

5-FU

Mitomycin C

IMRT

i.v. NCT01671488

Cervical cancer II Recruiting HPV-16 E7 – – n.a. NCT01266460

CIN II Recruiting HPV-16 E7 – – i.v. NCT01116245

Oropharyngeal 
cancer

I Recruiting HPV-16 E7 – – n.a. NCT01598792

Measles virus NSCLC I-II Unknown
Measles-virus 

encoded proteins
– – s.c. NCT00828022

Mixed

CIN I Recruiting HPV-16 E6/E7 –
E6/E7-coding plasmid

Imiquimod
i.m. NCT00788164

HCC I-II Recruiting AFP –
AFP- and GM-CSF-coding 

plasmids
i.m. NCT00669136

MVA virus

Breast cancer I Recruiting ERBB2 – – s.c. NCT01152398

CRC

Gastric cancer

Pancreatic cancer

I Recruiting p53 – – s.c. NCT01191684

Nasopharyngeal 
cancer

II Recruiting
EBNA1

LMP2
– – s.c. NCT01094405

NSCLC II-III Recruiting MUC1 IL-2
Conventional  

chemotherapy
s.c. NCT01383148

Prostate cancer I
Active, not 
recruiting

PAP

PSA
– – s.c. NCT00629057

Salmonella 
typhimurium

Pancreatic cancer I Recruiting VEGFR2 – – p.o. NCT01486329

5-FU, 5-fluorouracil; AFP, α fetoprotein; CEA, carcinoembryonic antigen; CIN, cervical intraepithelial neoplasia; CRC, colorectal carcinoma; 
EBNA1, Epstein-Barr nuclear antigen 1; ERBB2, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2; GM-CSF, granulocyte-macrophage 
colony stimulating factor; HCC, hepatocellular carcinoma; HPV, human papillomavirus; IL-2, interleukin-2; i.m., intra musculum; IMRT, intensity-
modulated radiation therapy; i.t., intra tumorem; i.v., intra venam; LMP2, latent membrane protein 2; MUC1, mucin 1; MVA, Modified Vaccinia Ankara; 
n.a., not available; NSCLC, non-small cell lung carcinoma; PAP, prostate acid phosphatase; PSA, prostate-specific antigen; r, recombinant; p.o., per 
os; s.c., sub cutem; TAA, tumor-associated antigen; VEGFR2, vascular endothelial growth factor receptor 2. *Started after January 1, 2008, and not 
withdrawn, terminated or completed at the day of submission.
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immune responses that de facto preclude boosting.98,99 Promising 
results have been also obtained with bacterial and eukaryotic vec-
tors,100–104 yet these tools appear to require a consistent degree of 
refinement before entering the clinical routine.

Only future will tell whether DNA vaccines will ever make 
their way from the bench to the bedside and transform from 
a promising investigational approach into a brilliant clinical 
reality.
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intracellular routing of the TAA(s) of choice is pre-determined, 
resulting in the preferential elicitation of humoral or cellular 
immune responses.96,97

The progress of anticancer DNA vaccines toward clinical 
applications is confronted with the very same issues that compli-
cate the development of other vaccination strategies.22,23 These 
include the limited availability of clinical grade TLR agonists for 
use adjuvants6,7 as well as the problems posed by the immuno-
suppressive tumor microenvironment, raising the need for the 
delivery of co-stimulatory signals, such as those elicited by CD40 
agonists,206,207 or immune checkpoint inhibitors, such as anti-
CTLA4 or anti-PD1 antibodies.135,141 In addition, the ability of 
DNA-based preparations to elicit TAA-specific immunity is dra-
matically influenced by transfection efficacy and delivery route, 
as these two factors dictate not only the amount of TAA that 
is available for (direct of cross-) presentation, but also the type 
and intensity of immunostimulatory signals that are released in 
situ to promote immune responses.79,81 Nowadays, the electro-
poration of naked DNA is perceived as the approach with a more 
straightforward path to clinical applications,79,81 whereas the effi-
cacy of viral vectors is limited by the development of anti-vector 
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