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Introduction

The possibility to employ vaccination as a therapeutic means 
against cancer was first proposed at the end of the 19th century 
by the German physician Paul Ehrlich (1854–1915) and the 
American surgeon William Bradley Coley (1862–1936),1 but 
the interest in this approach quickly declined thereafter.2 It’s 
only with the late 1990s that renovated enthusiasm has gathered 
around the use of vaccines in cancer therapy, at least in part 
owing to 2 conceptual advances: (1) Polly Matzinger’s danger 
theory, proposing that the immune system does not simply react 
against non-self constituents, but rather respond to situations of 
danger (irrespective of their origin),3 and (2) the discovery of 
antigens that are expressed preferentially, when not exclusively, 
by malignant cells.4

Thus, starting with the late 1990s, significant efforts have 
been dedicated at the development of preparations that would 
actively elicit a tumor-associated antigen (TAA)-specific 
immune response, including dendritic cell (DC)-based,5-7 
purified component-based,8-10 and DNA-based vaccines.11 The 
latter de facto consist in TAA-encoding circularized DNA 
constructs that are administered to cancer patients (most 
often via the intramuscular route) either in the form of naked 
DNA or by means of a suitable vector.11-14 Of note, DNA-based 
vaccines should be conceptually differentiated from other 
forms of gene therapy in that (1) they do not directly target 
diseased (malignant) cells, as it is the case of constructs that 
code for cytotoxic proteins,15-25 or enzymes that can transform 
an inactive chemical into a toxic drug;26-31 and (2) they do not 
boost the immune system in a relatively unspecific fashion, 
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During the past 2 decades, the possibility that preparations 
capable of eliciting tumor-specific immune responses would 
mediate robust therapeutic effects in cancer patients has 
received renovated interest. In this context, several approaches 
to vaccinate cancer patients against their own malignancies 
have been conceived, including the administration of DNA 
constructs coding for one or more tumor-associated antigens 
(TAAs). Such DNA-based vaccines conceptually differ from 
other types of gene therapy in that they are not devised to 
directly kill cancer cells or sensitize them to the cytotoxic 
activity of a drug, but rather to elicit a tumor-specific 
immune response. In spite of an intense wave of preclinical 
development, the introduction of this immunotherapeutic 
paradigm into the clinical practice is facing difficulties. Indeed, 
while most DNA-based anticancer vaccines are well tolerated 
by cancer patients, they often fail to generate therapeutically 
relevant clinical responses. In this Trial Watch, we discuss the 
latest advances on the use of DNA-based vaccines in cancer 
therapy, discussing the literature that has been produced 
around this topic during the last 13 months as well as clinical 
studies that have been launched in the same time frame to 
assess the actual therapeutic potential of this intervention.
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like constructs encoding immunostimulatory cytokines or 
ligands for co-stimulatory T-cell receptors.19,32-55 Although 
their efficiency strictly relies on the achievement of high 
transfection rates and efficient TAA presentation in vivo 
(see below), DNA-based vaccines have several advantages as 
compared with their DC-based and purified component-based 
counterparts, including (but limited to) those provided by 
genetic engineering. We have discussed these advantages in our 
latest Trial Watch dealing with the use of DNA-based vaccines 
in cancer therapy, which has been published in the April 2013 
issue of OncoImmunology.56

DNA-based vaccines are expected to enter tissue-resident 
antigen-presenting cells and/or myocytes, resulting in (1) local 
TAA synthesis; (2) presentation of TAA-derived peptides to 
naïve T cells; and (3) the consequent activation of potentially 
therapeutic TAA-specific CD8+ T cell-dependent and/or humoral 
immune responses.56,57 Several vectors have been evaluated for 
their ability to promote efficient TAA-specific immune responses 
upon the administration of DNA-based vaccines. As it stands, 
naked constructs remain the preferred form of DNA-based 
vaccines for clinical applications.11-14 Viral vectors generally yield 
improved rates of transduction and stable TAA expression,58-61 but 
are associated with several disadvantages, including the facts that 
(1) they can elicit potent neutralizing humoral responses (driven 
by packaging proteins); (2) they are relatively expensive; (3) some 
viral genomes cannot be engineered to bear large transgenes; and 
(4) some vectors have been associated with a non-negligible risk 
of insertional mutagenesis.58,59,62 Along similar lines, prokaryotic 
as well as eukaryotic vehicles are advantageous as they are 
compatible with oral administration, are capable of eliciting 
mucosal immune responses (which are generally considered 
superior than intramuscular ones), and endogenously express 
potent immunostimulatory factors (e.g., lipopolysaccharide, 
bacterial DNA),63-65 yet their large-scale application to clinical 
settings appears premature at this stage.11-14

Consistent efforts have also been dedicated at the 
identification of the delivery method that would allow for 
optimal immune responses to DNA-based vaccines.11,12,14,66,67 
In this context, it soon turned out that simple intramuscular 
injections generally result in poor TAA-specific immune 
responses, an effect that has been attributed to the limited 
hydrostatic pressure generated by standard injection volumes.68 
Several methods have been proposed as an alternative to 
intramuscular injections, including gene gun-mediated 
delivery,69,70 jet injection,71,72 and tattooing,73 all of which involve 
the transdermal route, as well as oral administration,74-76 and 
electroporation.69,77-79 Electroporation, i.e., the intramuscular 
delivery of naked DNA immediately followed by the application 
of an innocuous electrical stimulus, nowadays stands out as the 
delivery method of choice for DNA-based vaccines.80-83 This 
reflects the facts that electroporation (1) is associated with high 
transfection rates (irrespective of injection volume),68,79,83 (2) 
causes some extent of local tissue injury, resulting in the release 
of damage-associated molecular patterns (DAMPs) that operate 
as endogenous immunostimulants,84-86 and (3) may be perceived 
as uncomfortable yet is associated with no significant toxicities 

even when employed repetitively over several vaccination 
sessions.11,14

The efficacy of all anticancer vaccines, including DNA-
based preparations, obviously depends to a large extent on the 
TAA of choice. For illustrative purposes, TAAs can be classified 
into 4 mutually exclusive categories: (1) viral TAAs, which are 
by definition non-self but can be shared by different neoplasms 
caused by the same virus; (2) unique TAAs, which originate 
from cancer cell-specific mutations and hence are not shared 
by distinct tumors, not even of the same type; (3) idiotypic 
TAAs, another type of tumor-specific TAAs that reflect the 
rearrangement of transmembrane immunoglobulins expressed 
by clonal B-cell neoplasms; and (4) shared TAAs, which are 
also expressed by one or more healthy tissues (though to a 
limited extent). So-called cancer-testis antigens constitute bona 
fide shared TAAs, as they are expressed by both malignant 
and germline cells.87,88 Interestingly, efficient DNA-based 
vaccines that target TAAs from each of these classes have been 
constructed.56

In spite of a significant amount of encouraging clinical 
results,56 no DNA-based vaccines are currently licensed by the US 
Food and Drug Administration (FDA) for use in cancer patients, 
neither as a prophylactic nor as a therapeutic intervention (source 
http://www.fda.gov). Conversely, 3 of such preparations have 
been approved for veterinary use.89-92 Interestingly, one of these 
DNA-based vaccines, which is employed for the treatment of 
canine melanoma, relies on a xenogenous TAA (i.e., human 
tyrosinase).92

One year ago, in the April issue of OncoImmunology, we 
summarized the scientific rationale behind the use of DNA-
based vaccines in cancer therapy and discussed recent clinical 
trials evaluating the safety and efficacy of this approach.56 Here, 
we present the latest advances on the clinical development of 
tumor-targeting DNA-based vaccines.

Update on the Development of Anticancer Vaccines

Since the submission of the latest Trial Watch dealing with 
this topic,56 i.e., February 2013, the results of only 7 clinical 
trials testing the safety, immunogenicity and/or therapeutic 
activity of DNA-based anticancer vaccines have been published 
in peer-reviewed scientific journals (Table  1).93-98 Of these 
studies, 3 tested naked DNA preparations,93-95 3 relied on viral or 
eukaryotic vectors,96-98 and 1 tested an heterologous prime-boost 
approach. In same period, 6 clinical trials have been launched to 
test the safety and therapeutic potential of DNA-based anticancer 
vaccines in cancer patients (source http://www.clinicaltrials.gov).

Eriksson and colleagues reported the results of a Phase I study 
involving the intradermal administration of a plasmid encoding 
kallikrein-related peptidase 3 (KLK3, best known as prostate 
specific antigen, PSA)99,100 from Macaca mulatta (Rhesus macaque) 
to 15 patients with biochemical manifestations of relapsing 
prostate cancer who had previously been subjected to a 1 mo course 
of androgen deprivation therapy (ADT)101-103 (NCT00859729).94 
In this setting, the vaccine was administered by electroporation 
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every 4 wk over 5 consecutive mo. No systemic toxicities were 
recorded upon vaccination, which was only associated with 
some discomfort (not requiring analgesia or topical anesthetics) 
and/or minor skin reactions at the electroporation site. T cells 
and antibodies specific for xenogenous PSA could be detected 
in some patients upon vaccination, yet were not associated with 
clinical efficacy, as all subjects eventually required ADT owing 
to raising PSA levels. Of note, all but 1 patient exhibited pre-
vaccination reactivity against endogenous PSA.94 This suggests 
that relapsing tumors had already been immunoedited by a PSA-
targeting immunological pressure, possibly explaining the lack of 
efficacy of this approach.94

Tiriveedhi and collaborators characterized the immunological 
effects of a plasmid coding for secretoglobin, family 2A, member 
2 (SCGB2A2, best known as mammaglobin A, MAMA), 
which is overexpressed by a large fraction (up to 80%) of breast 
neoplasms,104-106 in 7 patients with Stage IV metastatic breast 
carcinoma (NCT00807781).95 In this context, MAMA-coding 
plasmids were administered via the intramuscular route (by 
means of a jet injector) in 3 vaccination sessions at 4-wk intervals 
from each other. As this Phase I clinical trial is still ongoing, data 

on safety and efficacy are not available. Nonetheless, Tiriveedhi 
et al. reported an increase in circulating CD4+ T cells expressing 
high levels inducible T-cell co-stimulator (ICOS)107 6 mo after 
vaccination, a phenomenon that was paralleled by a decline 
in the levels of blood-borne CD4+FOXP3+ regulatory T cells 
(Tregs).108-110 Interestingly, MAMA-specific CD4+ICOShigh T 
cells were found to predominantly express immunosuppressive 
cytokines such as interleukin-10 (IL-10) before vaccination, but 
immunostimulatory ones like interferon γ (IFNγ) thereafter. 
Such a shift in the secretory profile of CD4+ICOShigh T cells 
was associated with an improved ability to directly lyse MAMA-
expressing malignant cells.95 Thus, MAMA-targeting naked 
DNA-based vaccines may elicit therapeutically relevant immune 
responses in breast carcinoma patients. The conclusion of this 
clinical trial is eagerly awaited to shed light on this possibility.

Diaz and colleagues reported the results of 2 multicenter, 
Phase I, open-label dose-escalation trials testing a bivalent 
naked DNA-based vaccine targeting carcinoembryonic antigen 
(CEA)111-113 and v-erb-b2 avian erythroblastic leukemia viral 
oncogene homolog 2 (ERBB2, best known as HER2),114-116 
alone or combined with a dicistronic adenovirus type 6-based 

Table 1. Recent clinical trials testing the therapeutic profile of DNA-based vaccines in cancer patients*

Indication(s) Phase Status TAA(s)
Co-encoded 
molecule(s)

Co-therapy Vector Delivery Ref.

Bladder carcinoma II Recruiting
CEA

MUC1
CD80, CD57, 

ICAM1
BCG

Vaccinia virus (prime)
Fowlpox virus (boost)

s.c. NCT02015104

Breast carcinoma I Recruiting MAMA - - n.a. i.m. 95

Colorectal 
carcinoma

I Recruiting
CEA - - Alphavirus-derived VRP i.m. NCT01890213

GUCY2C PADRE - Adenovirus serotype 5 i.m. NCT01972737

Medullary thyroid 
cancer

II Recruiting CEA - -
Saccharomyces 

cerevisiae
s.c. NCT01856920

Nasopharyngeal 
cancer

I Recruiting
EBNA1 
LMP2

- - MVA i.d. NCT01800071

Ib Recruiting
EBNA1 
LMP2

- - MVA i.d. 97

Oropharyngeal 
cancer

I Recruiting HPV-16 E7 - - Listeria monocytogenes i.v. NCT02002182

Prostate cancer

I Completed
PSA - - pVAX-based plasmid i.d. + EP 94

PSMA - - Alphavirus-derived VRP s.c. 98

II Recruiting PSA
CD80, CD57, 

ICAM1
Enzalutamide

Vaccinia virus (prime)
Fowlpox virus (boost)

s.c.
NCT01867333

NCT01875250

Solid tumors

I Completed
CEA

HER2
LTB -

pV1J-based plasmids i.m. + EP 93

pV1J-based plasmids 
(prime)

Adenovirus serotype 6 
(boost)

i.m. + EP 93

II Recruiting CEA - -
Saccharomyces 

cerevisiae
s.c. 96

Abbreviations: BCG, bacillus Calmette–Guérin; CEA, carcinoembryonic antigen; EBNA1, Epstein-Barr nuclear antigen 1; EP, electroporation; GUCY2C, gua-
nylyl cyclase 2C; HPV-16, human papillomavirus type 16; i.d., intra dermam; i.m., intra musculum; i.v., intra venam; LMP2, latent membrane protein 2; LTB, 
E. coli heat labile toxin, B subunit; MAMA, mammaglobin A; MUC1, mucin 1; MVA, modified vaccinia virus Ankara; n.a., not available; PADRE, pan HLA 
DR-binding epitope; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; TAA, tumor-associated antigen; s.c., sub cutem; TERT, 
telomerase reverse transcriptase; VRP, virus-like replicon particle. *Published or initiated between 2013, January 1st and the day of submission.
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vaccine with identical specificity.93 In particular, both the 
naked DNA-based (V930) and the adenoviral vaccine (V932) 
encode a truncated variant of HER2 (lacking the cytoplasmic 
domain) and CEA fused to the B subunit of Escherichia coli 
heat labile toxin (LTB), as an adjuvant.117,118 In the first study 
(NCT00250419), 28 patients bearing various HER2- and/or 
CEA-expressing Stage II-IV malignancies (mainly colorectal, 
breast, and non-small cell lung carcinomas) received 5 courses 
of V930 (at 2-wk intervals) by electroporation. With the 
exception of 2 subjects suffering from Grade 3 abdominal pain 
and a few individuals reporting minor adverse effects (Grade 
1/2 injection site reactions, fatigue, and diarrhea), vaccination 
was globally well tolerated. However, 3 mo after vaccination, 
none of the subjects included in this study had developed 
detectable CEA- or HER2-specific T-cell responses.93 In the 
second study (NCT00647114), 11 patients with HER2- and/
or CEA-expressing Stage II-IV tumors were treated with V930 
and V932 in a heterologous prime-boost setting. In this context, 
the administration of V930 (priming, performed exactly as for 
the first study) was followed by the intramuscular delivery of 
V932 in 2 distinct sessions (boosting, 4 and 6 wk after the end 
of the priming cycle). Similar to V930, V932 was well tolerated. 
However, V932 failed to improve the ability of V930 to elicit 
CEA-or HER2-specific adaptive immune responses.93 The 
precise reasons for such a complete lack of efficacy have not yet 
been identified.

Stage I/II colorectal cancer patients are currently being 
recruited in the context of a Phase I clinical trial aimed at testing 
an adenovirus type 5-based vaccine that encodes guanylyl cyclase 
2C (GUCY2C, best known as GCC), which is universally 
expressed by colorectal cancer cells,119,120 and the so-called 
pan HLA DR-binding epitope (PADRE), a short peptide that 
operates as adjuvant121,122 (NCT01972737). Besides evaluating 
the safety and immunogenicity of this approach, this study 
aims at investigating whether the development of anti-GCC 
immunity is related to (1) occult metastases in regional lymph 
nodes; (2) race (African American vs. Caucasian); and (3) time 
to recurrence and/or disease-free survival.

Hui and collaborators tested a modified vaccinia virus Ankara 
(MVA)-based vector123,124 expressing 2 Epstein–Barr virus 
(EBV) antigens in patients with EBV-related nasopharyngeal 
carcinoma.97 All the patients enrolled in this Phase I clinical trial 
(18 individuals who were in remission for more than 12 wk after 
the completion of first-line therapies) received 3 intradermal 
vaccinations at 3-wk intervals. No dose-limiting toxicity was 
observed, and T-cell responses to either or both EBV antigens, 
namely, Epstein–Barr nuclear antigen 1 (EBNA1) and latent 
membrane protein 2 (LMP2),125,126 could be documented in 
15 out of 18 (83.3%) patients.97 This vaccination strategy is 
currently being tested in a larger cohort of patients affected by 
the same malignancy (NCT01800071).

Three Phase II clinical trials testing recombinant vaccinia and 
fowlpox viruses as vectors for DNA-based anticancer vaccines have 
recently been initiated and are currently recruiting patients. Two 
of the studies investigate the safety and efficacy of an heterologous 
prime-boost vaccination combined with enzalutamide (an 

androgen receptor antagonist also known as MDV3100)127-

130 in advanced prostate cancer patients (NCT01867333; 
NCT01875250). In both these settings, priming is achieved 
by the subcutaneous injection of a recombinant vaccinia virus 
expressing PSA plus 3 immunostimulatory molecules, namely, 
CD80 (also known as B7-1), CD58 (also known as LFA-3), 
and intercellular adhesion molecule 1 (ICAM1).131-135 Boosting 
is performed by the repeated subcutaneous delivery of a 
recombinant fowlpox virus encoding the same molecules. The 
third study aims at comparing the efficacy of a similar prime-
boost approach combined with bacillus Calmette–Guérin 
(BCG)-based immunotherapy63,64 in subjects with high grade 
non-muscle invasive bladder carcinoma (NCT02015104). In this 
case, however, the viral vectors employed for vaccination do not 
encode PSA but CEA and mucin 1 (MUC1), a glycoprotein that is 
overexpressed or aberrantly glycosylated in multiple tumors.136-138

Slovin and colleagues investigated the safety and therapeutic 
potential of alphavirus-derived virus-like replicon particles 
(VRPs)139-141 expressing high levels of folate hydrolase 1 (FOLH1, 
best known as prostate-specific membrane antigen, PMSA)142,143 
in subjects affected by castration-resistant metastatic prostate 
cancer.98,144 In this Phase I dose-escalation study, 12 patients 
received up to 4 vaccine doses (at 3-wk intervals), followed 
by a 5th dose 2 mo later. No systemic or local adverse effects 
were recorded, indicating that this regimen is well tolerated. 
However, although all patients were immunologically competent 
(as demonstrated by appropriate T-cell responses to standard 
mitogenic assays), none of them developed PSMA-specific 
cellular immunity. Accordingly, none of these individuals 
obtained clinical benefits from vaccination. As VRP-neutralizing 
antibodies were detected in some patients, dosing may have been 
suboptimal.98 A Phase I clinical trial study has recently been 
launched to assess the safety and immunogenicity of AVX701, 
an alphavirus-derived VRP encoding CEA in Stage III colorectal 
cancer patients (NCT01890213).

Bilusic et al. assessed the clinical profile of a heat-inactivated 
Saccharomyces cerevisiae strain that had been genetically 
manipulated to express human CEA (GI-6207).96,145,146 In this 
Phase I clinical trial, 25 subjects affected by CEA-expressing 
metastatic carcinomas underwent subcutaneous vaccination 
every 2 wk for 3 mo, and then monthly. Subcutaneous GI-6207 
was well tolerated and was able to induce systemic CEA-
specific T-cell responses as well as to decrease the percentage of 
circulating Tregs, at least in some individuals. Notably, 5 patients 
experienced stable disease upon vaccination, lasting for more > 3 
mo (range: 3.5 to 18 mo).96 A Phase II study has recently been 
launched to test the same experimental paradigm in patients with 
medullary thyroid cancer, which is often associated with increased 
CEA levels147,148 (NCT01856920). The primary endpoint of this 
trial will be the effect of GI-6207 on the levels of calcitonin (a 
circulating marker that correlates with tumor size)149-151 6 mo 
post-vaccination.

A Phase I clinical trial has been initiated a few months ago to 
test the therapeutic profile of a prokaryotic vector for DNA-based 
anticancer vaccination (NCT02002182). This study involves the 
intravenous administration of a live attenuated strain of Listeria 
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monocytogenes engineered to express the E6/E7 antigens of human 
papillomavirus (HPV),152-155 named ADX11-001, to patients with 
Stage II-IV HPV+ oropharyngeal cancer scheduled to undergo 
ablative surgery. In particular, ADX11-001 will be evaluated 
for its safety and ability to elicit HPV-specific circulating and 
intratumoral cytotoxic T-lymphocyte responses.

As for the clinical trials listed in our previous Trial 
Watch dealing with this topic,56 the following studies have 
changed status: NCT00669136, now listed as “Terminated”; 
NCT00629057, NCT01147965, NCT01152398, and 
NCT01191684, now listed as “Completed”; NCT00669734 
and NCT01304524, now listed as “Active, not recruiting”; and 
NCT01116245 and NCT01064375, whose status is “Unknown” 
(source http://www.clinicaltrials.gov). NCT00669136, aimed 
at testing an heterologous prime-boost vaccine targeting the 
α-fetoprotein (AFP)156 in subjects with hepatocellular carcinoma, 
was terminated owing to poor accrual and insufficient target 
population for future accrual. Among “Completed” studies, 
preliminary results appear to be available only for NCT01147965, 
a Phase I/II clinical trial aimed at assessing the safety and 
therapeutic potential of a CEA-encoding adenoviral vector in 
breast, colorectal, and lung carcinoma patients. In particular, 
the authors of this study reported that their adenoviral vector is 
able to elicit TAA- (CEA-)specific cellular immune responses in 
colorectal cancer patients, in spite of the presence of neutralizing 
antibodies.157 These findings indicate that some vectors for DNA-
based vaccination may be less sensitive than others to natural or 
immunization-induced humoral responses.

Interestingly, Gavazza and colleagues have recently evaluated 
the therapeutic profile of a heterologous prime-boost approach 
in a veterinarian trial.158 In this context, 42 client-owned dogs 
with Stage III/IV B-cell lymphosarcoma received a conventional 
chemotherapeutic regimen consisting of cyclophosphamide (an 
immunogenic alkylating agent),159-162 vincristine (a microtubular 
poison),163 and prednisolone (a glucocorticoid),164 either alone 
or combined with a prime-boost vaccine targeting endogenous 
telomerase reverse transcriptase (TERT), which is hyperactivated 
in a significant fraction of canine neoplasms.165 Priming relied on 
2 intramuscular injections (at a 2-wk interval) of an adenoviral 
vector expressing a catalytically inactive variant of canine TERT. 
Boosting was performed 4–6 wk later by administering a naked 
plasmid coding for the same protein fused to the leader sequence 
of the human plasminogen activator (at the N-terminus) and 
LTB (at the C-terminus). Boosting injections were repeated up to 
3 times, at 2-wk intervals from each other. Both treatments were 
extremely well tolerated by the cohort (no signs of toxicities), 
and 19 out of 21 (90.5%) vaccinated dogs developed a robust 
T-cell response against canine TERT. Moreover, vaccinated dogs 
exhibited a significant survival advantage as compared with dogs 
receiving chemotherapy only (> 76.1 vs. 29.3 wk, respectively).158 
These results validate the efficacy of TERT-targeting vaccines 
in dogs bearing B-cell malignancies,166,167 and support the 
evaluation of a similar approach for other veterinary neoplasms. 
TERT-targeting vaccines (including DNA-based, DC-based, 
and purified component-based formulations) have been 
intensively investigated as a therapeutic measure against multiple 

human neoplasms. However, no TERT-targeting preparations 
are currently approved by the US FDA or other international 
regulatory agencies for use in cancer patients.6,9,56

Concluding Remarks

As discussed above, several strategies have been devised in 
the past 2 decades to elicit therapeutically relevant TAA-specific 
immune responses in cancer patients.5-11 However, only one of 
these approaches is currently approved by the US FDA and other 
international regulatory agencies for use in humans. This is 
the DC-based preparation known as sipuleucel-T (Provenge®), 
which is currently licensed for the treatment of asymptomatic or 
minimally symptomatic metastatic castration-resistant prostate 
cancer.168 Conversely, in spite of encouraging results, no purified 
component-based and DNA-based anticancer vaccine has yet 
entered the clinical practice.9,10,56

During the last 13 mo, only a few clinical trials have been 
initiated to test the safety, immunogenicity and therapeutic 
potential of DNA-based anticancer vaccines, as if the initial 
enthusiasm about this (at least hypothetically) powerful 
immunotherapeutic paradigm were decreasing. Perhaps, this 
trend reflects a significant number of Phase I/II clinical studies 
in which DNA-based vaccines were shown to be well tolerated 
by cancer patients and exerted immunogenic effects, yet failed 
to elicit therapeutically relevant immune responses.56 We surmise 
that additional insights into the molecular and systemic factors 
that allow for the elicitation of robust TAA-specific immunity 
are required to conceive not only safe, but also efficient DNA-
based anticancer vaccines. As vaccines are normally administered 
in the presence of potent adjuvants, which generally operate via 
pattern recognition receptors,169 we expect agents other than Toll-
like receptor agonists to mediate optimal immunostimulatory 
effects in this context. The future will tell which, if any, of the 
multiple immunochemotherapeutic combinatorial regimens that 
are currently being developed170 endows DNA-based vaccines 
with the ability to elicit clinically meaningful anticancer immune 
responses.
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