177
Views
48
CrossRef citations to date
0
Altmetric
Articles

Imprinting and critical periods in early development

&
Pages 626-637 | Received 17 Mar 2006, Accepted 16 Jun 2006, Published online: 23 Sep 2019

References

  • BALDAUF, K., BRAUN, K. and GRUSS, M. (2005) Opiate modulation of monamines in the chick forebrain: possible role in emotional regulation? Journal of Neurobiology 62: 149–163.
  • BAILY, D.B. (2001) Critical Periods. Interview, March 2001, www.bookspublishing.com
  • BAILY, D.B., BRUER, J.T., SYMONS, F.J. and LICHTMAN, J.W. (2001) Critical thinking about critical periods. P H Brookes Publishing Co.
  • BARKER, D.J.P. (1995) Fetal origins of coronary heart diseases. British Medical Journal 311: 171–174.
  • BARTESAGHI, R., RAFFI, M. and CIANI, E. (2006) Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system. Neuroscience 137: 875–890.
  • BOCK, J. and BRAUN, K. (1998) Differential emotional experience leads to pruning of dendritic spines in the forebrain of domestic chicks. Neural Plasticity 6: 17–27.
  • BOCK, J. and BRAUN, K. (1999a) Blockade of N-methyl-D-aspartate receptor activation suppresses learninginduced synaptic elimination. Proceedings of the National Academy of Sciences USA 96: 2485–2490.
  • BOCK, J. and BRAUN, K. (1999b) Filial imprinting in domestic chicks is associated with spine pruning in the associative area, dorsal neostriatum. European Journal of Neuroscience 11: 2566–2570.
  • BOCK, J., HELMEKE, C., OVTSCHAROFF, JR. W., GRUSS, M. and BRAUN, K. (2003) Frühkindliche emotionale Erfahrungen beeinflussen die funktionelle Entwicklung des Gehirns. Neuroforum 2: 51–55.
  • BOCK, J., GRUSS, M., BECKER, S. and BRAUN, K. (2005a) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cerebral Cortex 15: 802–808.
  • BOCK, J., THODE, C., HANNEMANN, O., BRAUN, K. and DARLISON, M.G. (2005b) Early socioemotional experience induces expression of the immediate-early gene ARC/ARG3.1 (activity-regulated cytoskeleton-associated protein/activity-regulated gene) in learning-relevant brain regions of the newborn chick. Neuroscience 133: 625–633.
  • BROWN, M., KEYNES, R. and LUMSDEN, A. (2004) The developing brain. Oxford University Press.
  • BUYS, N., DEWIL, E., GONZALES, E. and DECUYPERE, E. (1998) Different CO2 levels during incubation interact with hatching time and ascites susceptibility in two broiler lines selected for different growth rate. Avian Pathology 27: 605–612.
  • DAMPNEY, R.A.L., HORIUCHI, J., KILLINGER, S., SHERIFF, M.J., TAN, P.S.P. and MCDOWALL, L.M. (2005) Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clinical and Experimental Pharmacology and Physiology 32: 419–425.
  • DAVIES, W., ISLES, A.R. and WILKINSON, L.S. (2005) Imprinted gene expression in the brain. Neuroscience and Biobehavioral Reviews 29: 421–430.
  • DECUYPERE, E. (1984) Incubation temperature in relation to postnatal performance in chickens. Archiv für Experimentelle Veterinärmedizin 38: 439–449.
  • DÖRNER, G. (1974) Environment-dependent brain differentiation and fundamental processes of life. Acta Biologica and Medica Germanica 33: 129–148.
  • DÖRNER, G. (1975) Perinatal hormone levels and brain organization. Anatomical Neuroendocrinology 1: 245–252.
  • DÖRNER, G. (1976) Hormones and brain differentiation. Amsterdam: Elsevier.
  • DÖRNER, G. (2002) Possible teratogenic, neuroendocrine causes of sub- and infertility. Andrologia 34: 123–153.
  • DÖRNER, G., GÖTZ, F., ROHDE, W., PLAGEMANN, A., LINDNER, R., PETERS, H. and GHANAATI, Z. (2001) Genetic and epigenetic effects on sexual brain organization mediated by sex hormones. Neuroendocrinology Letters 22: 403–409.
  • DUNCAN, J.R., COCK, M.L., HARDING, R. and REES, S.M. (2000) Relation between damage to the placenta and the fetal brain after late-gestation placental embolization and fetal growth restriction in sheep. American Journal of Obstetrics and Gynaecology 183: 10113–1022.
  • FERGUSON-SMITH, A.C. and SURANI, M.A. (2001) Imprinting and the epigenetic asymmetry between parental genomes. Science 293: 1086–1089.
  • FERSTER, D. and LEVAY, S. (1978) The axonal arborizations of the lateral geniculate neurons in the striate cortex of the cat. Journal Comparative Neurology 182: 923–944.
  • FURUYA, M., SASAKI, F., HASSANIN, A.M.A., KUWAHARA, S. and TSUKAMOTO, Y. (2002) Effects of bisphenol-A on the growth of comb and testes of male chicken. The Canadian Journal of Veterinary Research 67: 68–71.
  • HARWERTH, R.S., SMITH, E.L., DUNCAN, G.C., CRAWFORD, M.L. and VON NOORDEN, G.K. (1986) Multiple sensitive periods in the development of primate visual system. Science 232: 235–238.
  • HASSANZADEH, M., FARD, M.H.B., BUYSE, J., BRUGGEMAN, V. and DECUYPERE, E. (2004) Effect of chronic hypoxia during embryonic development on physiological functioning and on hatching and posthatching parameters related to ascites syndrome in broiler chickens. Avian Pathology 33: 558–564.
  • HUBEL, D.H. and WIESEL, T.N. (1977) Ferrier lectures: functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society London (Biology) 198: 1–59.
  • JACOBS, R., ROBINSON, J.S., OWENS, J.A., FALCONER, J. and WEBSTER, M.E. (1988) The effect of prolonged hypobaric hypoxia on growth of fetal sheep. Journal of Developmental Physiology 10: 97–112.
  • KOSKI, L.B., SASAKI, E., ROBERTS, R.D., GIBSON, J. and ETCHES, R.J. (2000) Monoalleleic transcription of the insulin-like growth factor-II gene (Igf2) in chicken embryos. Molecular reproduction and development 56: 345–352.
  • KREPPNER, J.M., O'CONNOR, T.G. and RUTTER, M. (2001) Can inattention/overactivity be an institutional deprivation syndrome? Journal of Abnormal Child Psychology 29: 513–528.
  • LEVY, G., LUTZ, I., KRÜGER, A. and KLOAS, W. (2004) Bisphenol A induces feminization in Xenopus laevis tadpoles. Environmental Research 94: 102–111.
  • LI, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics 3: 662–637.
  • LOH, B., MAIER, I., WINAR, A., JANKE, O. and TZSCHENTKE, B. (2004) Prenatal development of epigenetic adaptation processes in poultry: Changes in metabolic and neuronal thermoregulatory mechanisms. Avian & Poultry Biology Reviews 15: 119–128.
  • LORENZ, K. (1935) Der Kumpan in der Umwelt des Vogels. Journal für Ornithologie 83: 137–213.
  • MINNE, B. and DECUYPERE, E. (1984) Effects of late prenatal temperatures on some thermoregulatory aspects in young chickens. Archiv für Experimentelle Veterinärmedizin 38: 374–383.
  • MOORE, T. and HAIG, D. (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends in Genetics 7: 45–49.
  • NICHELMANN, M. and TZSCHENTKE, B. (1999) Thermoregulatory heat production in precocial avian embryos. Ornis Fennica 76: 177–187.
  • NICHELMANN, M. and TZSCHENTKE, B. (2003) Efficiency of thermoregulatory control elements in precocial avian embryos (Review). Avian & Poultry Biology Reviews 14: 1–19.
  • NICHELMANN, M., LANGE, B., PIROW, R., LANGBEIN, J. and HERRMANN, S. (1994) Avian thermoregulation during the perinatal period. In: Thermal Balance in Health and Disease. Advances in Pharmacological Science, Zeisberger, E., Schönbaum, E., Lomax, P. (eds.), Birkhäuser Verlag, Basel, pp. 167–173.
  • NICHELMANN, M., HÖCHEL, J. and TZSCHENTKE, B. (1999) Biological rhythms in birds –development, insights and perspectives. Comparative Biochemistry and Physiology 124A: 429–437.
  • NICHELMANN, M., JANKE, O., HÖCHEL, J. and TZSCHENTKE, B. (2001) Development of physiological control systems in avian embryos. News of Biomedical Science 1: 15–25.
  • NOLAN, C.M., KILLIAN, J.K., PETITTE, J.N. and JIRTLE, R.L. (2001) Imprint status of M6P/IGF2R and IGF2 in chickens. Development Genes Evolution 211: 179–183.
  • O'NEILL, M.J., INGRAM, R.S., VRANA, P.B. and TILGHAM, S.M. (2000) Allelic expression of IGF2 in marsupials and birds. Development Genes Evolution 210: 18–20.
  • OVTSCHAROFF, W. JR. and BRAUN, K. (2001) Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus. Neuroscience 104: 33–40.
  • PAKDEL, A., VAN ARENDONK, J.A., VEREIJKEN, A.L. and BOVENHUIS, H. (2002) Direct and maternal genetic effects for ascites-related traits in broilers. Poultry Science 81: 1273–1279.
  • PLAGEMANN, A. (2004) ‘Fetal Programming’ and ‘functional teratogenesis’: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. Journal of Perinatal Medicine 32: 297–305.
  • RUITENBEEK, K., LE NOBLE, F.A.C., JANSSEN, G.M.J., KESSELS, C.G.A., FAZZI, G.E., BLANCO, C.E. and DE MEY, J.G.R. (2000) Chronic hypoxia stimulates periarterial sympathetic nerve development in the chicken embryo. Circulation 102: 2892–2897.
  • SCHWABL, H. (1996) Maternal testosterone in avian egg enhances postnatal growth. Comparative Biochemistry and Physiology 114A: 271–276.
  • SCHWABL, H. (1997) Maternal steroid hormones in the egg. In: Harvey, S., Etches, R.J. (eds.) Perspectives in avian endocrinology. Bristol; Society for Endocrinology, pp. 3–13.
  • SURANI, M.A. (1998) Imprinting and initiation of gene silencing in the germ line. Cell 93: 309–312.
  • THODE, C., BOCK, J., BRAUN, K. and DARLISON, M.G. (2005) The chick immediate-early gene ZENK is expressed in the medio-rostral neostriatum/hyperstriatum ventrale, a brain region involved in acoustic imprinting, and is up-regulated after exposure to an auditory stimulus. Neuroscience 130: 611–617.
  • TUISKULA-HAAVISTO, M., DE KONING, D.J., HONKATUKIA, M., SCHULMAN, N.F., MAKITANILA, A. and VILKKI, J. (2004) Quantitative trait loci with parent-of-origin effects in chicken. Genetic Research 84: 57–66.
  • TZSCHENTKE, B. (2002) Stimulate body functions of embryos and get them used to the post-hatch environment. World Poultry 10: 22–25.
  • TZSCHENTKE, B. and NICHELMANN, M. (1997) Influence of prenatal and postnatal acclimation on nervous and peripheral thermoregulation. Annals of the New York Academy of Sciences 813: 87–94.
  • TZSCHENTKE, B. and NICHELMANN, M. (1999) Development of avian thermoregulatory system during the early postnatal period: development of the thermoregulatory set-point. Ornis Fennica 76: 189–198.
  • TZSCHENTKE, B. and BASTA, D. (2000) Development of hypothalamic neuronal thermosensitivity in birds during the perinatal period. Journal of Thermal Biology 25: 119–123.
  • TZSCHENTKE, B. and BASTA, D. (2002) Early development of neuronal hypothalamic thermosensitivity in birds: influence of epigenetic temperature adaptation. Comparative Biochemistry and Physiology 131A: 825–832.
  • TZSCHENTKE, B., BASTA, D., JANKE, O. and MAIER, I. (2004) Characteristics of early development of body functions and epigenetic adaptation to the environment in poultry: focused on development of central nervous mechanisms. Avian & Poultry Biology Reviews 15: 107–118.
  • VAN DEN HOVE, D.L.A., STEINBUSCH, H.W.M., SCHEEPENS, A., VAN DE BERG, W.D.J., KOOIMA, L.A.M., BOOSTEN, B.J.G., PRICKAERTS, J. and BLANCO, C.E. (2006) Prenatal stress and neonatal rat brain development. Neuroscience 137: 145–155.
  • VINKENOOG, R., BUSHELL, C., SPIELMAN, M., ADAMS, S., DICKINSON, H.G. and SCOTT, R.J. (2003) Genomic imprinting and endosperm development in flowering plants. Moleculare Biotechnology 25: 149–184.
  • WEAVER, I.C.G., CERVONI, N., CHAMPAGNE, F.A., ALESSIO, A.C.D., SHARMA, S., SECKL, J.R., DYMOV, S., SZYF, M. and MEANEY, M.J. (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 8: 847–854.
  • YAHAV, S. (2000) Domestic fowl – strategies to confront environmental conditions. Avian & Poultry Biology Reviews 11: 81–95.
  • YAHAV, S. AND PLAVNIK, I. (1999) Effects of early-age thermal conditioning and food restriction on performance and thermotolerance of male broiler fowl. British Poultry Sciences 40: 120–126.
  • YOKOMINE, T., SHIROHZU, H., PURBOWASITO, W., TOYODA, A., IWAMA, H., IKEO, K., HORI, T., MIZUNO, S., TSUDZUKI, M., MATSUDA, Y., HATTORI, M., SAKAKI, Y. and SASAKI, H. (2005) Structural and functional analysis of a 0.5-Mb chicken region orthologous to the imprinted mammalian Ascl2/Mash2-Igf2-H19 region. Genome Research 15: 154–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.