12,286
Views
86
CrossRef citations to date
0
Altmetric
Reviews

Understanding the T cell immune response in SARS coronavirus infection

, , &
Pages 1-6 | Received 10 May 2012, Accepted 06 Jul 2012, Published online: 25 Jan 2019

References

  • Zhong NS, Zheng BJ, Li YM, Xie ZH, Chan KH et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet2003; 362: 1353–1358.
  • WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. 2003. Available at http://www.who.int/csr/sars/country/table2003_09_23/en/.
  • Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet2003; 361: 1319–1325.
  • Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med2003; 348: 1967–1976.
  • Ksiazek TG, Erdman D, Goldsmith CS, Zaki SRPeret T, Emery S et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med2003; 348: 1953–1966.
  • Guan Y, Peiris JS, Zheng B, Poon LL, Chan KH, Zeng FY et al. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet2004; 363: 99–104.
  • Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA2005; 102: 14040–14045.
  • Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH et al. Bats are natural reservoirs of SARS-like coronaviruses. Science2005; 310: 676–679.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol2003; 331: 991–1004.
  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science2003; 300: 1394–1399.
  • Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS et al. The Genome sequence of the SARS-associated coronavirus. Science2003; 300: 1399–1404.
  • Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol2000; 81: 853–879.
  • Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev2007; 20: 660–694.
  • Tan YJ, Lim SG, Hong W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res2006; 72: 78–88.
  • Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res2008; 133: 113–121.
  • Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin Microbiol Infect2004; 10: 1062–1066.
  • Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA2004; 101: 9804–9809.
  • Lu L, Manopo I, Leung BP, Chng HH, Ling AE, Chee LL et al. Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J Clin Microbiol; 42: 1570–1576.
  • Wang YD, Sin WY, Xu GB, Yang HH, Wong TY, Pang XW et al. T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J Virol2004; 78: 5612–5618.
  • Wang B, Chen H, Jiang X, Zhang M, Wan T, Li N et al. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood2004; 104: 200–206.
  • Chen H, Hou J, Jiang X, Ma S, Meng M, Wang B et al. Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals. J Immunol2005; 175: 591–598.
  • Tsao YP, Lin JY, Jan JT, Leng CH, Chu CC, Yang YC et al. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins. Biochem Biophys Res Commun2006; 344: 63–71.
  • Zhou M, Xu D, Li X, Li H, Shan M, Tang J et al. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes. J Immunol2006 ; 177: 2138–2145.
  • Lv Y, Ruan Z, Wang L, Ni B, Wu Y. Identification of a novel conserved HLA-A*0201-restricted epitope from the spike protein of SARS-CoV. BMC Immunol2009; 10: 61.
  • Zhao K, Yang B, Xu Y, Wu C. CD8+ T cell response in HLA-A*0201 transgenic mice is elicited by epitopes from SARS-CoV S protein. Vaccine2010; 28: 6666–6674.
  • Huang J, Ma R, Wu CY. Immunization with SARS-CoV S DNA vaccine generates memory CD4+ and CD8+ T cell immune responses. Vaccine2006; 24: 4905–4913.
  • Zhao K, Wang H, Wu C. The immune responses of HLA-A*0201 restricted SARS-CoV S peptide-specific CD8 T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine2011; 29: 6670–6678.
  • Peng H, Yang LT, Wang LY, Li J, Huang J, Lu ZQ et al. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology2006; 351: 466–475.
  • Leung DT, Tam FC, Ma CH, Chan PK, Cheung JL, Niu H et al. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J Infect Dis2004; 190: 379–386.
  • Collisson EW, Pei J, Dzielawa J, Seo SH. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol2000; 24: 187–200.
  • Seo SH, Wang L, Smith R, Collisson EW. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol1997; 71: 7889–7894.
  • Li T, Xie J, He Y, Fan H, Baril L, Qiu Z et al. Long-term persistence of robust antibody and cytotoxic T cell responses in recovered patients infected with SARS coronavirus. PLoS One2006; 1: e24.
  • Oh HL, Chia A, Chang CX, Leong HN, Ling KL, Grotenbreg GM et al. Engineering T cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. J Virol2011; 85: 10464–10471.
  • Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M et al. T cell responses to whole SARS coronavirus in humans. J Immunol2008; 181: 5490–5500.
  • Gao W, Tamin A, Soloff A, D'Aiuto L, Nwanegbo E, Robbins PD et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet2003; 362: 1895–1896.
  • Zhu MS, Pan Y, Chen HQ, Shen Y, Wang XC, Sun YJ et al. Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett2004; 92: 237–243.
  • Zhao P, Cao J, Zhao LJ, Qin ZL, Ke JS, Pan W et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology2005; 331: 128–135.
  • Jin H, Xiao C, Chen Z, Kang Y, Ma Y, Zhu K et al. Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochem Biophys Res Commun2005; 328: 979–986.
  • Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol2004; 78: 4638–4645.
  • Ohno S, Kohyama S, Taneichi M, Moriya O, Hayashi H, Oda H et al. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine2009; 27: 3912–3920.
  • Yang L, Peng H, Zhu Z, Li G, Huang Z, Zhao Z et al. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol2007; 88: 2740–2748.
  • Lu B, Tao L, Wang T, Zheng Z, Li B, Chen Z et al. Humoral and cellular immune responses induced by 3a DNA vaccines against severe acute respiratory syndrome (SARS) or SARS-like coronavirus in mice. Clin Vaccine Immunol 2009; 16: 73–77.
  • Fan YY, Huang ZT, Li L, Wu MH, Yu T, Koup RA et al. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch Virol2009; 154: 1093–1099.
  • Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood2006; 107: 4781–4789.
  • Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med2007; 204: 1405–1416.
  • Zhu M. SARS Immunity and Vaccination. Cell Mol Immunol2004; 1: 193–198.
  • Breitburd F, Ramoz N, Salmon J, Orth G. HLA control in the progression of human papillomavirus infections. Semin Cancer Biol1996; 7: 359–371.
  • Thio CL, Gao X, Goedert JJ, Vlahov D, Nelson KE, Hilgartner MW et al. HLA-Cw*04 and hepatitis C virus persistence. J Virol2002; 76: 4792–4797.
  • Thio CL, Thomas DL, Goedert JJ, Vlahov D, Nelson KE, Hilgartner MW et al. Racial differences in HLA class II associations with hepatitis C virus outcomes. J Infect Dis2001; 184: 16–21.
  • Harcourt G, Hellier S, Bunce M, Satsangi J, Collier J, Chapman R et al. Effect of HLA class II genotype on T helper lymphocyte responses and viral control in hepatitis C virus infection. J Viral Hepat2001; 8: 174–179.
  • Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet2003; 4: 9.
  • Chen YM, Liang SY, Shih YP, Chen CY, Lee YM, Chang L et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J Clin Microbiol2006; 44: 359–365.
  • Ng MH, Lau KM, Li L, Cheng SH, Chan WY, Hui PK et al. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis2004; 190: 515–518.
  • Wang SF, Chen KH, Chen M, Li WY, Chen YJ, Tsao CH et al. Human-Leukocyte Antigen Class I Cw 1502 and Class II DR 0301 Genotypes Are Associated with Resistance to Severe Acute Respiratory Syndrome (SARS) Infection. Viral Immunol2011; 24: 421–426.
  • Robinson J, Malik A, Parham P, Bodmer JG, Marsh SG. IMGT/HLA database—a sequence database for the human major histocompatibility complex. Tissue Antigens2000; 55: 280–287.
  • Carrington M, O'Brien SJ. The influence of HLA genotype on AIDS. Annu Rev Med2003; 54: 535–551.
  • Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature2004; 432: 769–775.
  • Bihl F, Frahm N, Di Giammarino L, Sidney J, John M, Yusim K et al. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses. J Immunol2006; 176: 4094–4101.
  • Neumann-Haefelin C, McKiernan S, Ward S, Viazov S, Spangenberg HC, Killinger T et al. Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology2006; 43: 563–572.
  • Boon AC, De Mutsert G, Fouchier RA, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF. Preferential HLA usage in the influenza virus-specific CTL response. J Immunol2004; 172: 4435–4443.
  • Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev2005; 69: 635–664.
  • Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect2004; 10: 676–678.
  • Zhang L, Zhang F, Yu W, He T, Yu J, Yi CE et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J Med Virol2006; 78: 1–8.
  • Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med2004; 10: 871–875.
  • Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA2004; 101: 2536–2541.
  • Zhou J, Wang W, Zhong Q, Hou W, Yang Z, Xiao SY et al. Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. Vaccine2005; 23: 3202–3209.
  • Spruth M, Kistner O, Savidis-Dacho H, Hitter E, Crowe B, Gerencer M et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine2006; 24: 652–661.
  • Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine2011; 29: 6606–6613.
  • Lu B, Huang Y, Huang L, Li B, Zheng Z, Chen Z et al. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology2010; 130: 254–261.
  • See RH, Zakhartchouk AN, Petric M, Lawrence DJ, Mok CP, Hogan RJ et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol2006; 87: 641–650.
  • Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology2005; 334: 160–165.
  • Chen J, Lau YF, Lamirande EW, Paddock CD, Bartlett JH, Zaki SR et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol2010; 84: 1289–1301.
  • Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol2010; 84: 9318–9325.
  • Zhao J, Van Rooijen N, Perlman S. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLoS Pathog2009; 5: e1000636.
  • Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol2011; 186: 7264–7268.
  • Khanolkar A, Hartwig SM, Haag BA, Meyerholz DK, Epping LL, Haring JS et al. Protective and pathologic roles of the immune response to mouse hepatitis virus type 1: implications for severe acute respiratory syndrome. J Virol2009; 83: 9258–9272.