847
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Complex temporal climate signals drive the emergence of human water-borne disease

, , , , &
Pages 1-9 | Received 23 Sep 2015, Accepted 02 Nov 2015, Published online: 25 Jan 2019

  • Chaves LF, Satake A, Hashizume M, Minakawa N.Indian ocean dipole and rainfall drive a moran effect in East Africa malaria transmission. J Infect Dis2012;205: 1885–1891.
  • Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K.Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci2008;275: 123–132.
  • Zhou G, Minakawa N, Githeko AK, Yan G.Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci USA2004;101: 2375–2380.
  • Gagnon AS, Bush AB, Smoyer-Tomic KE.Dengue epidemics and the El Niño Southern Oscillation. Clim Res 20012001;19: 35–43.
  • Hanf M, Adenis A, Nacher M, Carme B.The role of El Nino Southern Oscillation (ENSO) on variations of monthly Plasmodium falciparum malaria cases at the cayenne general hospital, 1996–2009, French Guiana. Malar J2011;10: 100.
  • Pascual M, Rodó X, Ellner SP, Colwell R, Bouma MJ.Cholera dynamics and El Niño-Southern Oscillation. Science2000;289: 1766–1769.
  • Rodó X, Pascual M, Fuchs G, Faruque ASG.ENSO and cholera: a nonstationary link related to climate change? Proc Natl Acad Sci USA2002;99: 12901–12906.
  • Chaves LF, Pascual M.Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med2006;3: e295.
  • Mahamat A, Dussart P, Bouix A et al.Climatic drivers of seasonal influenza epidemics in French Guiana, 2006–2010. J Infect2013;67: 141–147.
  • Gagnon A, Smoyer-Tomic K, Bush A.The El Niño Southern Oscillation and malaria epidemics in South America. Int J Biometeorol2002;46: 81–89.
  • Lipp EK, Huq A, Colwell RR.Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev2002;15: 757–770.
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA.Impact of regional climate change on human health. Nature2005;438: 310–317.
  • Merritt RW, Walker ED, Small PL et al.Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl Trop Dis2010;4: e911.
  • World Health Organization. Buruli ulcer. Diagnosis of Mycobacterium ulcerans disease. A manual for health care providers.Geneva: WHO, 2001.Available at http://apps.who.int/iris/bitstream/10665/67000/1/WHO_CDS_CPE_GBUI_2001.4.pdf?ua=1 (assessed 1 June 2013).
  • World Health Organization. Buruli ulcer. Management of Mycobacterium ulcerans disease. A manual for health care providers.Geneva: WHO, 2001.Available at http://whqlibdoc.who.int/hq/2001/WHO_CDS_CPE_GBUI_2001.3.pdf (assessed 1 June 2013).
  • Merritt RW, Benbow ME, Small PL.Unraveling an emerging disease associated with disturbed aquatic environments: the case of Buruli ulcer. Front Ecol Environ2005;3: 323–331.
  • Morris A, Gozlan R, Marion E et al.First detection of Mycobacterium ulcerans DNA in environmental samples from South America. PLoS Negl Trop Dis2014;8: e2660.
  • Garchitorena A, Roche B, Kamgang R et al.Mycobacterium ulcerans ecological dynamics and its association with freshwater ecosystems and aquatic communities: results from a 12-month environmental survey in Cameroon. PLoS Negl Trop Dis2014;8: e2879.
  • Marsollier L, Robert R, Aubry J et al.Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol2002;68: 4623–4628.
  • Marsollier L, Stinear T, Aubry J et al.Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol2004;70: 1097–1103.
  • Marsollier L, Sévérin T, Aubry J et al.Aquatic snails, passive hosts of Mycobacterium ulcerans. Appl Environ Microbiol2004;70: 6296–6298.
  • Mosi L, Williamson H, Wallace JR, Merritt RW, Small PL.Persistent association of Mycobacterium ulcerans with West African predaceous insects of the family belostomatidae. Appl Environ Microbiol2008;74: 7036–7042.
  • Broomhead DS, King GP.Extracting qualitative dynamics from experimental data. Physica D1986;20: 217–236.
  • Broomhead DS, King GP.On the qualitative analysis of experimental dynamical systems. In: Sarkar S (ed). Nonlinear phenomena and chaos.Bristol: Adam Hilger, 1986: 113–144.
  • Hassani H. Singular spectrum analysis: methodology and comparison.Munich: University Library of Munich, 2007.
  • Hassani H, Heravi S, Zhigljavsky A.Forecasting European industrial production with singular spectrum analysis. Int J Forecast2009;25: 103–118.
  • Hassani H, Thomakos D.A review on singular spectrum analysis for economic and financial time series. Stat Interface2010;3: 377–397.
  • Koelle K, Rodo X, Pascual M, Yunus M, Mostafa G.Refractory periods and climate forcing in cholera dynamics. Nature2005;436: 696–700.
  • Golyandina N, Nekrutkin V, Zhigljavsky A. Analysis of time series structure: SSA and related techniques.Boca Raton, FL: Chapman and Hall/CRC, 2001.
  • Hurtado LA, Cáceres L, Chaves LF, Calzada JE.When climate change couples social neglect: malaria dynamics in Panamá. Emerg Microbes Infect2014;3: e28.
  • Huang NE, Shen Z, Long SR et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci1998;454: 903–995.
  • Cazelles B, Chavez M, Berteaux D et al.Wavelet analysis of ecological time series. Oecologia2008;156: 287–304.
  • Maraun D, Kurths J.Cross wavelet analysis: significance testing and pitfalls. Nonlinear Processes Geophys2004;11: 505–514.
  • Maraun D, Kurths J, Holschneider M.Nonstationary Gaussian processes in wavelet domain: synthesis, estimation, and significance testing. Phys Rev E Stat Nonlin Soft Matter Phys2007;75(1 Pt 2): 016707.
  • Torrence C, Compo GP.A practical guide to wavelet analysis. Bull Am Meteorol Soc1998;79: 61–78.
  • Klvana I, Berteaux D, Cazelles B.Porcupine feeding scars and climatic data show ecosystem effects of the solar cycle. Am Nat2004;164: 283–297.
  • Chowell G, Munayco C, Escalante A, McKenzie FE.The spatial and temporal patterns of falciparum and vivax malaria in Peru: 1994–2006. Malar J2009;8: 142.
  • Gouhier TC. Biwavelet: conduct univariate and bivariate wavelet analyses.0.14 ed.Loverpool: Gouhier TC, 2012.Available at http://biwavelet.r-forge.r-project.org (accessed 16 August 2013).
  • Cazelles B, Stone L.Detection of imperfect population synchrony in an uncertain world. J Anim Ecol2003;72: 953–968.
  • Shumway R, Stoffer D.Time series regression and exploratory data analysis. In: Time series analysis and its applications.New York: Springer, 2011: 47–82.
  • Trubiano JA, Lavender CJ, Fyfe JA, Bittmann S, Johnson PD.The incubation period of Buruli ulcer (Mycobacterium ulcerans infection). PLoS Negl Trop Dis2013;7: e2463.
  • Pascual M, Bouma MJ, Dobson AP.Cholera and climate: revisiting the quantitative evidence. Microbes Infect2002;4: 237–245.
  • Benton TG, Plaistow SJ, Coulson TN.Complex population dynamics and complex causation: devils, details and demography. Proc Biol Sci2006;273: 1173–1181.
  • Cazelles B, Hales S.Infectious diseases, climate influences, and nonstationarity. PLoS Med2006;3: e328.
  • Hastings A.Transient dynamics and persistence of ecological systems. Ecol Lett2001;4: 215–220.
  • van Ravensway J, Benbow ME, Tsonis AA et al.Climate and landscape factors associated with Buruli ulcer incidence in Victoria, Australia. PLoS ONE2012;7: e51074.
  • Cazelles B, Chavez M, McMichael AJ, Hales S.Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med2005;2: e106.
  • Fyfe JA, Lavender CJ, Handasyde KA et al.A Major role for mammals in the ecology of Mycobacterium ulcerans. PLoS Negl Trop Dis2010;4: e791.
  • Portaels F, Elsen P, Guimaraes-Peres A, Fonteyne PA, Meyers WM.Insects in the transmission of Mycobacterium ulcerans infection. Lancet1999;353: 986.
  • Williamson HR, Benbow ME, Nguyen KD et al.Distribution of Mycobacterium ulcerans in Buruli ulcer endemic and non-endemic aquatic sites in Ghana. PLoS Negl Trop Dis2008;2: e205.
  • Arthington AH, Balcombe SR, Wilson GA, Thoms MC, Marshall J.Spatial and temporal variation in fish-assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone floodplain river, Cooper Creek, Australia. Marine Freshwater Res2005;56: 25–35.
  • Harris GP.Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management. Can J Fish Aquat Sci1980;37: 877–900.
  • Kratz TK, Frost TM, Magnuson JJ.Inferences from spatial and temporal variability in ecosystems: long-term zooplankton data from lakes. Am Nat1987;129: 830–846.
  • Ruetz CR, Trexler JC, Jordan F, Loftus WF, Perry SA.Population dynamics of wetland fishes: spatio-temporal patterns synchronized by hydrological disturbance? J Anim Ecol2005;74: 322–332.
  • Maio JD, Corkum LD.Relationship between the spatial distribution of freshwater mussels (Bivalvia: Unionidae) and the hydrological variability of rivers. Can J Zool1995;73: 663–671.
  • Githeko A, Ndegwa W.Predicting malaria epidemics in the Kenyan Highlands using climate data: a tool for decision makers. Glob Change Hum Health2001;2: 54–63.
  • Loevinsohn ME.Climatic warming and increased malaria incidence in Rwanda. Lancet1994;343: 714–718.
  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB.Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA2010;107: 15135–15139.