2,753
Views
137
CrossRef citations to date
0
Altmetric
Original Articles

Comparative genomic analysis of pre-epidemic and epidemic Zika virus strains for virological factors potentially associated with the rapidly expanding epidemic

, , , , , , & show all
Pages 1-12 | Received 02 Mar 2016, Accepted 03 Mar 2016, Published online: 25 Jan 2019

  • ChanJF,ChoiGK,YipCCet al.Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease?J Infect2016e-pub ahead of print 2 March 2016; doi:https://doi.org/10.1016/j.jinf.2016.02.011..
  • DickGW,KitchenSF,HaddowAJ.Zika virus. I. Isolations and serological specificity.Trans R Soc Trop Med Hyg1952; 46:509–520.
  • DuffyMR,ChenTH,HancockWTet al.Zika virus outbreak on Yap Island, Federated States of Micronesia.N Engl J Med2009; 360:2536–2543.
  • TognarelliJ,UlloaS,VillagraEet al.A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014.Arch Virol2016; 151:665–668.
  • RothA,MercierA,LepersCet al.Concurrent outbreaks of dengue, chikungunya and Zika virus infections - an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014.Euro Surveill2014; 19:pii: 20929.
  • Dupont-RouzeyrolM,O’ConnorO,CalvezEet al.Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014.Emerg Infect Dis2015; 21:381–382.
  • BogochII,BradyOJ,KraemerMUet al.Anticipating the international spread of Zika virus from Brazil.Lancet2016; 387:335–336.
  • European Centre for Disease Prevention and Control (ECDC).Rapid Risk Assessment - Zika virus epidemic in the Americas: potential association with microcephaly and Guillain-Barré syndrome. Solna: ECDC, 2015. Available athttp://ecdc.europa.eu/en/publications/Publications/zika-virus-americas-association-with-microcephaly-rapid-risk-assessment.pdf(accessed on 20 February 2016).
  • MlakarJ,KorvaM,TulNet al.Zika Virus Associated with Microcephaly.N Engl J Med2016e-pub ahead of print 10 February 2016; doi:https://doi.org/10.1056/NEJMoa1600651.
  • CalvetG,AguiarRS,MeloASet al.Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study.Lancet Infect Dis2016e-pub ahead of print 17 February 2016; doi:https://doi.org/10.1016/S1473-3099(16)00095-5.
  • Schuler-FacciniL,RibeiroEM,FeitosaIMet al.Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015.Morbid Mortal Wkly Rep2016; 65:59–62.
  • World Health Organization (WHO)WHO statement on the first meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations; 1 February 2016.Geneva: WHO, 2016. Available athttp://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/(accessed on 20 February 2016).
  • SalvadorFS,FujitaDM.Entry routes for Zika virus in Brazil after 2014 world cup: New possibilities.Travel Med Infect Dis2016; 14:49–51.
  • PazS,SemenzaJC.El Niño and climate change-contributing factors in the dispersal of Zika virus in the Americas?Lancet2016; 387:745.
  • EnfissiA,CodringtonJ,RoosbladJet al.Zika virus genome from the Americas.Lancet2016; 387:227–228.
  • NeiM,GojoboriT.Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.Mol Biol Evol1986; 3:418–426.
  • TamuraK,StecherG,PetersonDet al.MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Mol Biol Evol2013; 30:2725–2729.
  • LauSK,LeeP,TsangAKet al.Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination.J Virol2011; 85:11325–1137.
  • BrintonMA.Replication cycle and molecular biology of the West Nile virus.Viruses2014; 6:13–53.
  • HaddowAD,SchuhAJ,YasudaCYet al.Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage.PLoS Negl Trop Dis2012; 6:e1477.
  • ChanJF,LauSK,ToKKet al.Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease.Clinical Microbiol Rev2015; 28:465–522.
  • ChanJF,ToKK,TseHet al.Interspecies transmission and emergence of novel viruses: lessons from bats and birds.Trends Microbiol2013; 21:544–555.
  • ZumlaA,ChanJF,AzharEIet al.Coronaviruses—drug discovery and therapeutic options.Nat Rev Drug Discov2016e-pub ahead of pinrt 12 February 2016; doi:https://doi.org/10.1038/nrd.2015.37.
  • VillordoSM,CarballedaJM,FilomatoriCVet al.RNA Structure Duplications and Flavivirus Host Adaptation.Trends Microbiol2016e-pub ahead of pinrt 2 February 2016; doi:https://doi.org/10.1016/j.tim.2016.01.002.
  • CahourA,PletnevA,Vazielle-FalcozMet al.Growth-restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome.Virology1995; 207:68–76.
  • YuL,MarkoffL.The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence.J Virol2005; 79:2309–2324.
  • RobyJA,PijlmanGP,WiluszJet al.Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses.Viruses2014; 6:404–427.
  • FilomatoriCV,LodeiroMF,AlvarezDEet al.A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome.Genes Dev2006; 20:2238–2249.
  • DongH,ZhangB,ShiPY.Flavivirus methyltransferase: a novel antiviral target.Antiviral Res2008; 80:1–10.
  • ZhangB,DongH,SteinDAet al.West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions.Virology2008; 373:1–13.
  • PolacekC,FriebeP,HarrisE.Poly(A)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency.J Gen Virol2009; 90:687–692.
  • BlackwellJL,BrintonMA.Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA.J Virol1997; 71:6433–6444.
  • De Nova-OcampoM,Villegas-SepulvedaN,del AngelRM.Translation elongation factor-1alpha, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA.Virology2002; 295:337–347.
  • LobigsM.Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3.Proc Natl Acad Sci USA1993; 90:6218–6222.
  • AmbergSM,NestorowiczA,McCourtDWet al.NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies.J Virol1994; 68:3794–3802.
  • MaL,JonesCT,GroeschTDet al.Solution structure of dengue virus capsid protein reveals another fold.Proc Natl Acad Sci USA2004; 101:3414–3419.
  • WangSH,SyuWJ,HuST.Identification of the homotypic interaction domain of the core protein of dengue virus type 2.J Gen Virol2004; 85:2307–2314.
  • WestawayEG,KhromykhAA,KenneyMTet al.Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus.Virology1997; 234:31–41.
  • MoriY,OkabayashiT,YamashitaTet al.Nuclear localization of Japanese encephalitis virus core protein enhances viral replication.J Virol2005; 79:3448–3458.
  • OhW,YangMR,LeeEWet al.Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein.J Biol Chem2006; 281:30166–30174.
  • SangiambutS,KeelapangP,AaskovJet al.Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection.J Gen Virol2008; 89:1254–1264.
  • JiaF,ZhuX,XuF.A single adaptive point mutation in Japanese encephalitis virus capsid is sufficient to render the virus as a stable vector for gene delivery.Virology2016; 490:109–118.
  • LinYJ,WuSC.Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus.J Virol2005; 79:8535–8544.
  • ZhangY,ChenP,CaoRet al.Mutation of putative N-linked glycosylation sites in Japanese encephalitis virus premembrane and envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination.Virol J2011; 8:138.
  • ChavezJH,SilvaJR,AmarillaAAet al.Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization.Biologicals2010; 38:613–618.
  • LinHH,LeeHC,LiXFet al.Dengue type four viruses with E-Glu345Lys adaptive mutation from MRC-5 cells induce low viremia but elicit potent neutralizing antibodies in rhesus monkeys.PLoS One2014; 9:e100130.
  • WhitemanMC,WickerJA,KinneyRMet al.Multiple amino acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness.Vaccine2011; 29:9702–9710.
  • de Melo FreireCC,IamarinoA,de Lima NetoDFet al.Spread of the pandemic Zika virus lineage is associated with NS1 codon usage adaptation in humans.bioRxiv2015e-pub ahead of print 25 November 2015; doi:http://dx.doi.org/10.1101/032839.
  • WinklerG,MaxwellSE,RuemmlerCet al.Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization.Virology1989; 171:302–305.
  • WinklerG,RandolphVB,CleavesGRet al.Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer.Virology1988; 162:187–196.
  • MuylaertIR,GallerR,RiceCM.Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation.J Virol1997; 71:291–298.
  • MackenzieJM,KhromykhAA,JonesMKet al.Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A.Virology1998; 245:203–215.
  • MillerS,SparacioS,BartenschlagerR.Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B.J Biol Chem2006; 281:8854–8863.
  • AguirreS,MaestreAM,PagniSet al.DENV inhibits type I IFN production in infected cells by cleaving human STING.PLoS Pathog2012; 8:e1002934.
  • LiuWJ,WangXJ,MokhonovVVet al.Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins.J Virol2005; 79:1934–1942.
  • LiuWJ,WangXJ,ClarkDCet al.A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice.J Virol2006; 80:2396–2404.
  • WickerJA,WhitemanMC,BeasleyDWet al.A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice.Virology2006; 349:245–253.
  • WickerJA,WhitemanMC,BeasleyDWet al.Mutational analysis of the West Nile virus NS4B protein.Virology2012; 426:22–33.
  • AshourJ,Laurent-RolleM,ShiPYet al.NS5 of dengue virus mediates STAT2 binding and degradation.J Virol2009; 83:5408–5418.
  • FayeO,FreireCC,IamarinoAet al.Molecular evolution of Zika virus during its emergence in the 20(th) century.PLoS Negl Trop Dis2014; 8:e2636.