1,028
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis

, , , , , , , , , , , , & show all
Pages 1-8 | Received 02 Nov 2016, Accepted 09 Apr 2017, Published online: 15 Jan 2019

References

  • World Health Organization. Global Tuberculosis Report, 2016 Geneva: WHO.2016 Available at http://www.who.int/tb/publications/global_report/en/ (accessed 1 October 2016).
  • North RJ, Jung YJ.Immunity to tuberculosis. Annu Rev Immunol 2004;22: 599–623.
  • Flynn JL, Chan J.Immunology of tuberculosis. Annu Rev Immunol 2001;19: 93–129.
  • Pai M, Zwerling A, Menzies D.Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 2008;149: 177–184.
  • Marei A, Ghaemmaghami A, Renshaw Pet al.Superior T cell activation by ESAT-6 as compared with the ESAT-6-CFP-10 complex. Int Immunol 2005;17: 1439–1446.
  • Wang JY, Chou CH, Lee LNet al.Diagnosis of tuberculosis by an enzyme-linked immunospot assay for interferon-gamma. Emerg Infect Dis 2007;13: 553–558.
  • Millington KA, Fortune SM, Low Jet al.Rv3615c is a highly immunodominant RD1 (region of difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 2011;108: 5730–5735.
  • Arlehamn CS, Sidney J, Henderson Ret al.Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J Immunol 2012;188: 5020–5031.
  • Horvati K, Bosze S, Gideon HPet al.Population tailored modification of tuberculosis specific interferon-gamma release assay. J Infect 2016;72: 179–188.
  • Khalid R, Afzal M, Khurshid Set al.Fusion molecules of heat shock protein HSPX with other antigens of Mycobacterium tuberculosis show high potential in serodiagnosis of tuberculosis. PLoS One 2016;11: e0163349.
  • Ostroff RM, Wretlind B, Vasil ML.Mutations in the hemolytic-phospholipase C operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions. Infect Immun 1989;57: 1369–1373.
  • Rahme LG, Stevens EJ, Wolfort SFet al.Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995;268: 1899–1902.
  • Camilli A, Goldfine H, Portnoy DA.Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med 1991;173: 751–754.
  • Kameyama S, Sato H, Murata R.The role of alpha-toxin of Clostridium perfringens in experimental gas gangrene in guinea pigs. Jpn J Med Sci Biol 1972;25: 200.
  • Raynaud C, Guilhot C, Rauzier Jet al.Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2002;45: 203–217.
  • de Souza GA, Leversen NA, Malen Het al.Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 2011;75: 502–510.
  • Matsui T, Carneiro CR, Leao SC.Evidence for the expression of native Mycobacterium tuberculosis phospholipase C: recognition by immune sera and detection of promoter activity. Braz J Med Biol Res 2000;33: 1275–1282.
  • Parkash O, Singh BP, Pai M.Regions of differences encoded antigens as targets for immunodiagnosis of tuberculosis in humans. Scand J Immunol 2009;70: 345–357.
  • Lundegaard C, Lund O, Buus Set al.Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 2010;130: 309–318.
  • Lafuente EM, Reche PA.Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des 2009;15: 3209–3220.
  • Chen P, Rayner S, Hu KH.Advances of bioinformatics tools applied in virus epitopes prediction. Virol Sin 2011;26: 1–7.
  • Zhang XW.A combination of epitope prediction and molecular docking allows for good identification of MHC class I restricted T-cell epitopes. Comput Biol Chem 2013;45: 30–35.
  • Antonets DV, Maksiutov AZ.TEpredict: software for T-cell epitope prediction. Mol Biol 2010;44: 130–139.
  • Xu Y, Zhu B, Wang Qet al.Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-gamma confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice. FEMS Immunol Med Microbiol 2007;51: 480–487.
  • Huygen K.The immunodominant T-cell epitopes of the mycolyl-transferases of the antigen 85 complex of M. tuberculosis. Front Immunol 2014;5: 321.
  • Lin CW, Su IJ, Chang JRet al. Recombinant BCG coexpressing Ag85B, CFP10, and interleukin-12 induces multifunctional Th1 and memory T cells in mice. Apmis 2012;120: 72–82.
  • Dietrich J, Aagaard C, Leah Ret al.Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol 2005;174: 6332–6339.
  • Klinguer-Hamour C, Libon C, Plotnicky-Gilquin Het al.DDA adjuvant induces a mixed Th1/Th2 immune response when associated with BBG2Na, a respiratory syncytial virus potential vaccine. Vaccine 2002;20: 2743–2751.
  • Cole ST, Brosch R, Parkhill Jet al.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393: 537–544.
  • Ramsay A, Harries AD.The clinical value of new diagnostic tools for tuberculosis. F1000 Med Rep 2009;1: 36.
  • Viana-Niero C, de Haas PE, van Soolingen Det al.Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 2004;150 (Pt 4): 967–978.
  • Andersen P, Doherty TM.The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 2005;3: 656–662.
  • Bertholet S, Ireton GC, Ordway DJet al.A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2010;2: 53ra74.
  • Ottenhoff TH, Doherty TM, van Dissel JTet al.First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum Vaccin 2010;6: 1007–1015.
  • Windish HP, Duthie MS, Misquith Aet al.Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 2011;29: 7842–7848.
  • Huang Q, Yu W, Hu T.Potent antigen-adjuvant delivery system by conjugation of Mycobacterium tuberculosis Ag85B-HspX fusion protein with arabinogalactan-Poly(I:C) conjugate. Bioconjug Chem 2016;27: 1165–1174.
  • Derrick SC, Yabe IM, Yang Aet al.Immunogenicity and protective efficacy of novel Mycobacterium tuberculosis antigens. Vaccine 2013;31: 4641–4646.
  • Matucci A, Maggi E, Vultaggio A.Cellular and humoral immune responses during tuberculosis infection: useful knowledge in the era of biological agents. J Rheumatol Suppl 2014;91: 17–23.
  • Romagnani P, Annunziato F, Piccinni MPet al.Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw 2000;11: 510–511.
  • Teixeira FM, Teixeira HC, Ferreira APet al.DNA vaccine using Mycobacterium bovis Ag85B antigen induces partial protection against experimental infection in BALB/c mice. Clin Vaccine Immunol 2006;13: 930–935.
  • Achkar JM, Casadevall A.Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe 2013;13: 250–262.
  • Manivannan S, Rao NV, Ramanathan VD.Role of complement activation and antibody in the interaction between Mycobacterium tuberculosis and human macrophages. Indian J Exp Biol 2012;50: 542–550.
  • Hetland G, Wiker HG, Hogasen Ket al.Involvement of antilipoarabinomannan antibodies in classical complement activation in tuberculosis. Clin Diagn Lab Immunol 1998;5: 211–218.
  • Casadevall A, Pirofski LA.A new synthesis for antibody-mediated immunity. Nat Immunol 2011;13: 21–28.
  • Bottai D, Frigui W, Clark Set al.Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine 2015;33: 2710–2718.
  • Hafner AM, Corthesy B, Merkle HP.Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 2013;65: 1386–1399.