3,968
Views
74
CrossRef citations to date
0
Altmetric
Review

Vector competence of European mosquitoes for West Nile virus

, , &
Pages 1-13 | Received 02 May 2017, Accepted 27 Aug 2017, Published online: 15 Jan 2019

References

  • Bowen RA, Nemeth NM.Experimental infections with West Nile virus. Curr Opin Infect Dis 2007;20: 293–297.
  • Petersen LR, Brault AC, Nasci RS.West Nile virus: review of the literature. JAMA 2013;310: 308–315.
  • Buckley A, Dawson A, Gould EA.Detection of seroconversion to West Nile virus, Usutu virus and Sindbis virus in UK sentinel chickens. Virol J 2006;3: 71.
  • Buckley A, Dawson A, Moss SRet al.Serological evidence of West Nile virus, Usutu virus and Sindbis virus infection of birds in the UK. J Gen Virol 2003;84: 2807–2817.
  • Linke S, Niedrig M, Kaiser Aet al.Serologic evidence of West Nile virus infections in wild birds captured in Germany. Am J Trop Med Hyg 2007;77: 358–364.
  • Lim SM, Brault AC, van Amerongen Get al.Susceptibility of carrion crows to experimental infection with lineage 1 and 2 West Nile Viruses. Emerg Infect Dis 2015;21: 1357–1365.
  • Lim SM, Brault AC, van Amerongen Get al.Susceptibility of European jackdaws (Corvus monedula to experimental infection with lineage 1 and 2 West Nile viruses. J Gen Virol 2014;95: 1320–1329.
  • Hamer GL, Kitron UD, Goldberg TLet al.Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 2009;80: 268–278.
  • Kent R, Juliusson L, Weissmann Met al.Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 2009;46: 380–390.
  • Kilpatrick AM, Daszak P, Jones MJet al.Host heterogeneity dominates West Nile virus transmission. Proc R Soc Lond B Biol Sci 2006;273: 2327–2333.
  • Muñoz J, Eritja R, Alcaide Met al.Host-feeding patterns of native Culex pipiens and invasive Aedes albopictus mosquitoes (Diptera: Culicidae) in urban zones from Barcelona, Spain. J Med Entomol 2011;48: 956–960.
  • Muñoz J, Ruiz S, Soriguer Ret al.Feeding patterns of potential West Nile virus vectors in South-West Spain. PLoS ONE 2012;7: e39549.
  • Osório HC, Zé-Zé L, Alves MJ.Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J Med Entomol 2012;49: 717–721.
  • Rizzoli A, Bolzoni L, Chadwick EAet al.Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vectors 2015;8: 213.
  • Brugman VA, Hernández-Triana LM, England MEet al.Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasit Vectors 2017;10: 163.
  • Garrett-Jones C.Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity. Nature 1964;204: 1173–1175.
  • Kenney J, Brault A.The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. In: Maramorosch K, Murphy FAAdvances in Virus Research vol. 89.Waltham: Academic Press.2014 pp 39–83.
  • Goddard LB, Roth AE, Reisen WKet al.Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 2002;8: 1385–1391.
  • Sardelis MR, Turell MJ, Dohm DJet al.Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 2001;7: 1018.
  • Turell MJ, Dohm DJ, Sardelis MRet al.An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 2005;42: 57–62.
  • Turell MJ, Sardelis MR, Dohm DJet al.Potential North American vectors of West Nile virus. Ann N Y Acad Sci 2001;951: 317–324.
  • Balenghien T, Vazeille M, Grandadam Met al.Vector competence of some French Culex and Aedes mosquitoes for West Nile virus. Vector Borne Zoonotic Dis 2008;8: 589–595.
  • Balenghien T, Vazeille M, Reiter Pet al.Evidence of laboratory vector competence of Culex modestus for West Nile virus. J Am Mosq Control Assoc 2007;23: 233–236.
  • Lerdthusnee K, Romoser WS, Faran MEet al.Rift Valley Fever virus in the cardia of Culex pipiens: An immunocytochemical and ultrastructural study. Am J Trop Med Hyg 1995;53: 331–337.
  • Terra WR.The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 2001;47: 47–61.
  • Houk EJ, Obie F, Hardy JL.Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, Culex tarsalis Coquillett (Insecta, Diptera). Acta Trop 1979;36: 39–45.
  • Hardy JL, Houk EJ, Kramer LDet al.Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 1983;28: 229–262.
  • Girard YA, Popov V, Wen Jet al.Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 2005;42: 429–444.
  • Whitfield SG, Murphy FA, Sudia WD.St. Louis encephalitis virus: an ultrastructural study of infection in a mosquito vector. Virology 1973;56: 70–87.
  • Kato N, Mueller CR, Fuchs JFet al.Evaluation of the function of a type I peritrophic matrix as a physical barrier for midgut epithelium invasion by mosquito-borne pathogens in Aedes aegypti. Vector Borne Zoonotic Dis 2008;8: 701–712.
  • Mendoza MY, Salas-Benito JS, Lanz-Mendoza Het al.A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 2002;67: 76–84.
  • Vega-Almeida TO, Salas-Benito M, De Nova-Ocampo MAet al.Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol 2013;158: 1189–1207.
  • McGee CE, Shustov AV, Tsetsarkin Ket al.Infection, dissemination, and transmission of a West Nile virus green fluorescent protein infectious clone by Culex pipiens quinquefasciatus mosquitoes. Vector Borne Zoonotic Dis 2010;10: 267–274.
  • Scholle F, Girard YA, Zhao Qet al.trans-Packaged West Nile virus-like particles: infectious properties in vitro and in infected mosquito vectors. J Virol 2004;78: 11605–11614.
  • Franz A, Kantor A, Passarelli Aet al.Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015;7: 3741–3767.
  • Thomas RE, Wu W-K, Verleye Det al.Midgut basal lamina thickness and dengue-1 virus dissemination rates in laboratory strains of Aedes albopictus (Diptera: Culicidae). J Med Entomol 1993;30: 326–331.
  • Romoser WS, Wasieloski LP, Pushko Pet al.Evidence for arbovirus dissemination conduits from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 2004;41: 467–475.
  • Salazar MI, Richardson JH, Sánchez-Vargas Iet al.Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 2007;7: 1.
  • Romoser WS, Turell MJ, Lerdthusnee Ket al.Pathogenesis of Rift Valley fever virus in mosquitoes—tracheal conduits & the basal lamina as an extra-cellular barrier. Arch Virol 2005;19: 89–100.
  • Weaver SC, Scott TW, Lorenz LHet al.Detection of Eastern equine encephalomyelitis virus deposition in Culiseta melanura following ingestion of radiolabeled virus in blood meals. Am J Trop Med Hyg 1991;44: 250–259.
  • da Cunha Sais T, de Moraes RM, Ribolla PEet al.Morphological aspects of Culex quinquefasciatus salivary glands. Arthropod Structure & Development 2003;32: 219–226.
  • Göertz GP, Vogels CBF, Geertsema Cet al.Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl Trop Dis 2017;11: e0005654.
  • Turell MJ, Mores CN, Dohm DJet al.Laboratory transmission of Japanese encephalitis and West Nile viruses by molestus form of Culex pipiens (Diptera: Culicidae) collected in Uzbekistan in 2004. J Med Entomol 2006;43: 296–300.
  • Vazeille M, Yébakima A, Lourenço-de-Oliveira Ret al.Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses. Vector Borne Zoonotic Dis 2013;13: 37–40.
  • Sim S, Ramirez JL, Dimopoulos G.Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog 2012;8: e1002631.
  • Clem RJ.Arboviruses and apoptosis: the role of cell death in determining vector competence. J Gen Virol 2016;97: 1033–1036.
  • Hayes EB, Komar N, Nasci RSet al.Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 2005;11: 1167–1173.
  • Brustolin M, Talavera S, Santamaría Cet al.Culex pipiens and Stegomyia albopicta (=Aedes albopictus populations as vectors for lineage 1 and 2 West Nile virus in Europe. Med Vet Entomol 2016;30: 166–173.
  • Fortuna C, Remoli ME, Severini Fet al.Evaluation of vector competence for West Nile virus in Italian Stegomyia albopicta (=Aedes albopictus mosquitoes. Med Vet Entomol 2015;29: 430–433.
  • Blagrove MSC, Sherlock K, Chapman GEet al.Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritusAedes detritus for dengue, chikungunya and West Nile viruses. Parasit Vectors 2016;9: 1–6.
  • Huber K, Jansen S, Leggewie Met al.Aedes japonicus japonicus (Diptera: Culicidae) from Germany have vector competence for Japan encephalitis virus but are refractory to infection with West Nile virus. Parasitol Res 2014;113: 3195–3199.
  • Leggewie M, Badusche M, Rudolf Met al.Culex pipiens and Culex torrentium populations from Central Europe are susceptible to West Nile virus infection. One Health 2016;2: 88–94.
  • Fortuna C, Remoli ME, Di Luca Met al.Experimental studies on comparison of the vector competence of four Italian Culex pipiens populations for West Nile virus. Parasit Vectors 2015;8: 463.
  • Fros JJ, Miesen P, Vogels CBet al.Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health 2015;1: 31–36.
  • Fros JJ, Geertsema C, Vogels CBet al.West Nile Virus: High transmission rate in north-western European mosquitoes indicates its epidemic potential and warrants increased surveillance. PLoS Negl Trop Dis 2015;9: e0003956.
  • Vogels CBF, Fros JJ, Göertz GPet al.Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit Vectors 2016;9: 393.
  • Vogels CBF, Göertz GP, Pijlman GPet al.Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures. Med Vet Entomol 2017;31: 358–364.
  • Gargan TP, Bailey CL, Higbee GAet al.The effect of laboratory colonization on the vector-pathogen interactions of Egyptian Culex pipiens and Rift Valley Fever Virus. Am J Trop Med Hyg 1983;32: 1154–1163.
  • Grimstad PR, Craig GB Jr, Ross QEet al.Aedes triseriatus and La Crosse virus: geographic variation in vector susceptibility and ability to transmit. Am J Trop Med Hyg 1977;26: 990–996.
  • Domingo E, Sheldon J, Perales C.Viral quasispecies evolution. Microbiol Mol Biol Rev 2012;76: 159–216.
  • Ciota AT, Lovelace AO, Ngo KAet al.Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 2007;357: 165–174.
  • Pesko K, Westbrook CJ, Mores CNet al.Effects of infectious virus dose and blood meal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to chikungunya virus. J Med Entomol 2009;46: 395–399.
  • Mahmood F, Chiles RE, Fang Yet al.Methods for studying the vector competence of Culex tarsalis for western equine encephalomyelitis virus. J Am Mosq Control Assoc 2004;20: 277–282.
  • Komar N, Langevin S, Hinten Set al.Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 2003;9: 311.
  • Reisen WK, Fang Y, Martinez VM.Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 2005;42: 367–375.
  • Bae H-G, Nitsche A, Teichmann Aet al.Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay. J Virol Methods 2003;110: 185–191.
  • Choy MM, Ellis BR, Ellis EMet al.Comparison of the mosquito inoculation technique and quantitative real time polymerase chain reaction to measure dengue virus concentration. Am J Trop Med Hyg 2013;89: 1001–1005.
  • Kilpatrick AM, Kramer LD, Campbell SRet al.West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 2005;11: 425–429.
  • Papa A, Xanthopoulou K, Tsioka Aet al.West Nile virus in mosquitoes in Greece. Parasitol Res 2013;112: 1551–1555.
  • Fritz ML, Walker ED, Miller JRet al.Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring. Med Vet Entomol 2015;29: 115–123.
  • Osório HC, Zé-Zé L, Amaro Fet al.Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiensmolestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med Vet Entomol 2014;28: 103–109.
  • Sardelis MR, Turell MJ.Ochlerotatus j. japonicus in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. J Am Mosq Control Assoc 2001;17: 137–141.
  • Turell MJ, O'Guinn ML, Dohm DJet al.Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 2001;38: 130–134.
  • Göertz GP, Fros JJ, Miesen Pet al.Non-coding subgenomic flavivirus RNA is processed by the mosquito RNAi machinery and determines West Nile virus transmission by Culex pipiens mosquitoes. J Virol 2016;90: 10145–10159.
  • Prasad AN, Brackney D, Ebel G.The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013;5: 3142.
  • Saraiva RG, Kang S, Simões MLet al.Mosquito gut antiparasitic and antiviral immunity. Dev Comp Immunol 2016;64: 53–64.
  • Blair CD.Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol 2011;6: 265–277.
  • Hess AM, Prasad AN, Ptitsyn Aet al.Small RNA profiling of dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 2011;11: 45.
  • Franz AWE, Sanchez-Vargas I, Adelman ZNet al.Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 2006;103: 4198–4203.
  • Sánchez-Vargas I, Scott JC, Poole-Smith BKet al.Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 2009;5: e1000299.
  • Brackney DE, Beane JE, Ebel GD.RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 2009;5: e1000502.
  • Kakumani PK, Ponia SS, KS Rajgokulet al.Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol 2013;87: 8870–8883.
  • Samuel GH, Wiley MR, Badawi Aet al.Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci USA 2016;113: 13863–13868.
  • Fragkoudis R, Attarzadeh-Yazdi G, Nash AAet al.Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol 2009;90: 2061–2072.
  • Arbouzova NI, Zeidler MP.JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 2006;133: 2605–2616.
  • Souza-Neto JA, Sim S, Dimopoulos G.An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA 2009;106: 17841–17846.
  • Colpitts TM, Cox J, Vanlandingham DLet al.Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 2011;7: e1002189.
  • Xi Z, Ramirez JL, Dimopoulos G.The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog 2008;4: e1000098.
  • Bartholomay LC, Waterhouse RM, Mayhew GFet al.Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 2010;330: 88–90.
  • Paradkar PN, Trinidad L, Voysey Ret al.Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci USA 2012;109: 18915–18920.
  • Sim S, Jupatanakul N, Dimopoulos G.Mosquito immunity against arboviruses. Viruses 2014;6: 4479–4504.
  • Ramirez JL, Dimopoulos G.The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol 2010;34: 625–629.
  • Luplertlop N, Surasombatpattana P, Patramool Set al.Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog 2011;7: e1001252.
  • Sim S, Jupatanakul N, Ramirez JLet al.Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis 2013;7: e2295.
  • Vaidyanathan R, Scott TW.Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 2006;11: 1643–1651.
  • Barón OL, Ursic-Bedoya RJ, Lowenberger CAet al.Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus. J Insect Sci 2010;10: 41.
  • Liu B, Behura SK, Clem RJet al.P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLoS Pathog 2013;9: e1003137.
  • Girard YA, Schneider BS, McGee CEet al.Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am J Trop Med Hyg 2007;76: 118–128.
  • Girard YA, Mayhew GF, Fuchs JFet al.Transcriptome changes in Culex quinquefasciatus (Diptera: Culicidae) salivary glands during West Nile virus infection. J Med Entomol 2010;47: 421–435.
  • Hegde S, Rasgon JL, Hughes GL.The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol 2015;15: 97–102.
  • Jupatanakul N, Sim S, Dimopoulos G.The insect microbiome modulates vector competence for arboviruses. Viruses 2014;6: 4294.
  • Salas-Benito JS, De Nova-Ocampo M.Viral interference and persistence in mosquito-borne flaviviruses. J Immunol Res 2015;2015: 14.
  • O'Neill SL, Hoffmann AA, Werren JH. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction.Oxford, UK: Oxford University Press.1997.
  • Johnson KN.The impact of Wolbachia on virus infection in mosquitoes. Viruses 2015;7: 5705–5717.
  • Hussain M, Lu G, Torres Set al.Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol 2013;87: 851–858.
  • Glaser RL, Meola MA.The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 2010;5: e11977.
  • Dodson BL, Hughes GL, Paul Oet al.Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis 2014;8: e2965.
  • Micieli MV, Glaser RL.Somatic Wolbachia (Rickettsiales: Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and resistance to West Nile virus infection. J Med Entomol 2014;51: 189–199.
  • Engler O, Savini G, Papa Aet al.European surveillance for West Nile virus in mosquito populations. Int J Env Res Public Health 2013;10: 4869–4895.
  • Chaskopoulou A, L’Ambert G, Petric Det al.Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response. Parasit Vectors 2016;9: 482.
  • Cadar D, Lühken R, van der Jeugd Het al.Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Euro Surveill 2017;22: 30452.
  • Gossner CM, Marrama L, Carson Met al.West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach. Euro Surveill 2017;22.
  • Anderson SL, Richards SL, Tabachnick WJet al.Effects of West Nile virus dose and extrinsic incubation temperature on temporal progression of vector competence in Culex pipiens quinquefasciatus. J Am Mosq Control Assoc 2010;26: 103–107.
  • Kilpatrick AM, Meola MA, Moudy RMet al.Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 2008;4: e1000092.
  • Murdock CC, Paaijmans KP, Cox-Foster Det al.Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol 2012;10: 869–876.
  • Adelman ZN, Anderson MAE, Wiley MRet al.Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis 2013;7: e2239.
  • Alto BW, Lounibos LPVector competence for arboviruses in relation to the larval environment of mosquitoes. In: Takken W, Koenraadt CJMEcology of Parasite-Vector Interactions.Wageningen: Wageningen Academic Publishers.2013 pp 81–101.
  • Gonçalves D, Hunziker P.Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016;15: 95.
  • Wang S, Jacobs-Lorena M.Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol 2013;31: 185–193.
  • Nguyen TH, Nguyen HL, Nguyen TYet al.Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors 2015;8: 563.