1,625
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Attenuation of highly pathogenic avian influenza A(H5N1) viruses in Indonesia following the reassortment and acquisition of genes from low pathogenicity avian influenza A virus progenitors

, ORCID Icon, , , , , , , , & show all
Pages 1-14 | Received 18 Aug 2017, Accepted 23 Jun 2018, Published online: 22 Aug 2018

References

  • SwayneDEAntibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from IndonesiaJ. Virol.201589 3746 376210.1128/JVI.00025-154403412
  • PongcharoensukPAvian and pandemic human influenza policy in South-East Asia: the interface between economic and public health imperativesHealth Policy Plan.20122737438310.1093/heapol/czr056
  • UngchusakKProbable person-to-person transmission of avian influenza A (H5N1)N. Engl. J. Med.200535233334010.1056/NEJMoa044021
  • ZhouLRisk factors for human illness with avian influenza A (H5N1) virus infection in ChinaJ. Infect. Dis.20091991726173410.1086/5992062759027
  • SetiawatyVAvian influenza A(H5N1) virus outbreak investigation: application of the FAO-OIE-WHO four-way linking framework in IndonesiaZoonoses Public. Health20156238138710.1111/zph.12158
  • WHO. Cumulative Number of Confirmed Human Cases of Avian Influenza A (H5N1) Reported to WHO, 2003–2017. http://www.who.int/influenza/human_animal_interface/2017_09_27791_tableH5N1.pdf?ua=1 (2017).
  • SanthiaKAvian influenza A H5N1 infections in Bali Province, Indonesia: a behavioral, virological and seroepidemiological studyInfluenza Other Respir Viruses20098189
  • SedyaningsihERIsfandariSSoendoroTSupariSFTowards mutual trust, transparency and equity in virus sharing mechanism: the avian influenza case of IndonesiaAnn. Acad. Med. Singap.200837482488
  • VijaykrishnaDEvolutionary dynamics and emergence of panzootic H5N1 influenza virusesPLoS Pathog.20084e100016110.1371/journal.ppat.10001612533123
  • WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis.14 (2008).
  • SmithGJDDonisROWorld Health Organization/WorldOrganisation for Animal HF, Agriculture Organization HEWG.Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014Influenza Other Respir. Virus.2015927127610.1111/irv.12324
  • REEDLJMUENCHHA simple method of estimating 50% endpointsAm. J. Epidemiol.19382749349710.1093/oxfordjournals.aje.a118408
  • WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclatureInfluenza Other Respir. Virus.201261510.1111/j.1750-2659.2011.00298.x
  • WHO/OIE/FAO H5N1 Evolution Working Group.Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) virusesInfluenza Other Respir. Virus.2014838438810.1111/irv.12230
  • MatsuokaYNeuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for miceJ. Virol.2009834704470810.1128/JVI.01987-082668507
  • ZhouHThe special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virusPLoS One20094e627710.1371/journal.pone.00062772707603
  • Song, W., et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat. Commun. 5 (2014).
  • LiZMolecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse modelJ. Virol.200579120581206410.1128/JVI.79.18.12058-12064.20051212590
  • ConenelloGMZamarinDPerroneLATumpeyTPalesePA single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulencePLoS Pathog.200731414142110.1371/journal.ppat.0030141
  • JacksonDHossainMJHickmanDPerezDRLambRAA new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicityProc. Natl. Acad. Sci. U. S. A.20081054381438610.1073/pnas.08004821052393797
  • BouvierNMLowenACAnimal models for influenza virus pathogenesis and transmissionViruses201021530156310.3390/v208015303063653
  • BelserJAPathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in miceJ. Virol.2010844194420310.1128/JVI.02742-092863721
  • MainesTRAvian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammalsJ. Virol.200579117881180010.1128/JVI.79.18.11788-11800.20051212624
  • LuXA mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humansJ. Virol.19997359035911112651
  • TakanoRA comparison of the pathogenicity of avian and swine H5N1 influenza viruses in IndonesiaArch. Virol.200915467768110.1007/s00705-009-0353-55785675
  • MunsterVJInsertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotypeJ. Virol.2010847953796010.1128/JVI.00449-102916526
  • SuguitanALThe multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammalsJ. Virol.2012862706271410.1128/JVI.05546-113302284
  • AuewarakulPAn avian influenza H5N1 virus that binds to a human-type receptorJ. Virol.2007819950995510.1128/JVI.00468-072045398
  • CrusatMChanges in the hemagglutinin of H5N1 viruses during human infection--influence on receptor bindingVirology201344732633710.1016/j.virol.2013.08.0103820038
  • WangWGlycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferretsJ. Virol.2010846570657710.1128/JVI.00221-102903256
  • GaoYIdentification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian hostPLoS Pathog.20095e100070910.1371/journal.ppat.10007092791199
  • ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature201248642042810.1038/nature108313388103
  • ZhangXHemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virusVet. Microbiol.201517524425610.1016/j.vetmic.2014.12.011
  • RussellCAThe potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian hostScience20123361541154710.1126/science.12225263426314
  • BlumenkrantzDRobertsKLSheltonHLycettSBarclayWSThe short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferretsJ. Virol.201387105391055110.1128/JVI.00967-133807409
  • SorrellEMSongHPenaLPerezDRA 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickensJ. Virol.201084118311184010.1128/JVI.01460-102977859
  • HoffmannTWLength variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducksJ. Virol.20128658458810.1128/JVI.05474-113255888
  • SubbaraoEKLondonWMurphyBRA single amino acid in the PB2 gene of influenza A virus is a determinant of host rangeJ. Virol.19936717611764240216
  • SteelJLowenACMubarekaSPalesePTransmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701NPLoS Pathog.20095e100025210.1371/journal.ppat.10002522603332
  • MinJYMammalian adaptation in the PB2 gene of avian H5N1 influenza virusJ. Virol.201387108841088810.1128/JVI.01016-133807384
  • BogsJReversion of PB2-627E to -627K during replication of an H5N1 Clade 2.2 virus in mammalian hosts depends on the origin of the nucleoproteinJ. Virol.201185106911069810.1128/JVI.00786-113187502
  • ReedMLAmino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin proteinJ. Virol.2009833568358010.1128/JVI.02238-082663236
  • LeQMSakai-TagawaYOzawaMItoMKawaokaYSelection of H5N1 Influenza Virus PB2 during Replication in HumansJ. Virol.2009835278528110.1128/JVI.00063-092682078
  • ZellRPrevalence of PB1-F2 of influenza A virusesJ. Gen. Virol.200788Pt 253654610.1099/vir.0.82378-0
  • LeungBWChenHBrownleeGGCorrelation between polymerase activity and pathogenicity in two duck H5N1 influenza viruses suggests that the polymerase contributes to pathogenicityVirology20104019610610.1016/j.virol.2010.01.036
  • FanSTwo amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in miceVirology2009384283210.1016/j.virol.2008.11.044
  • AbedYGoyetteNBoivinGGeneration and characterization of recombinant influenza A (H1N1) viruses harboring amantadine resistance mutationsAntimicrob. Agents Chemother.20054955655910.1128/AAC.49.2.556-559.2005547263
  • CheungCLDistribution of amantadine-resistant H5N1 avian influenza variants in AsiaJ. Infect. Dis.20061931626162910.1086/504723
  • IlyushinaNAGovorkovaEAWebsterRGDetection of amantadine-resistant variants among avian influenza viruses isolated in North America and AsiaVirology200534110210610.1016/j.virol.2005.07.003
  • JiaoPA single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in miceJ. Virol.2008821146115410.1128/JVI.01698-07
  • LongJXPengDXLiuYLWuYTLiuXFVirulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural geneVirus Genes20083647147810.1007/s11262-007-0187-8
  • SeoSHHoffmannEWebsterRGLethal H5N1 influenza viruses escape host anti-viral cytokine responsesNat. Med.2002895095410.1038/nm757
  • LamTTYPhylodynamics of H5N1 avian influenza virus in IndonesiaMol. Ecol.2012213062307710.1111/j.1365-294X.2012.05577.x
  • SusilariniNKApplication of WHO’s guideline for the selection of sentinel sites for hospital-based influenza surveillance in IndonesiaBMC Health Serv. Res.20141410.1186/1472-6963-14-4244179842
  • SahaSInfluenza seasonality and vaccination timing in tropical and subtropical areas of southern and south-eastern AsiaBull. World Health Organ.20149231833010.2471/BLT.13.1244124007122
  • NguyenTCharacterization of a highly pathogenic avian influenza H5N1 virus sublineage in poultry seized at ports of entry into VietnamVirology200938725025610.1016/j.virol.2009.03.006
  • MonneIReassortant avian influenza virus (H5N1) in poultry, Nigeria, 2007Emerg. Infect. Dis.20081463764010.3201/eid1404.0711782570913
  • MonneIReassortant avian influenza A(H5N1) viruses with H9N2-PB1 gene in poultry, BangladeshEmerg. Infect. Dis.2013191630163410.3201/eid1910.1305343811991
  • WuDPoultry farms as a source of avian influenza A (H7N9) virus reassortment and human infectionSci. Rep.2015510.1038/srep076304295517
  • LiCReassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulenceProc. Natl. Acad. Sci. U. S. A.20101074687469210.1073/pnas.09128071072842136