2,191
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

The molecular basis of antigenic variation among A(H9N2) avian influenza viruses

ORCID Icon, , , ORCID Icon &
Pages 1-12 | Received 02 Jul 2018, Accepted 08 Oct 2018, Published online: 07 Nov 2018

References

  • JakhesaraSJBhattVDPatelNVPrajapatiKSJoshiCGIsolation and characterization of H9N2 influenza virus isolates from poultry respiratory disease outbreak+201434004788
  • LeeYNIsolation and characterization of a novel H9N2 influenza virus in Korean native chicken farmAvian Dis.201155 724 72710.1637/9774-050911-Case.1
  • PuJEvolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virusProc. Natl. Acad. Sci. USA201511254855310.1073/pnas.1422456112
  • ZecchinBiancaMinoungouGermaineFusaroAliceMoctarSidiOuedraogo-KaboréAnneSchivoAlessiaSalviatoAnnalisaMarcianoSabrinaMonneIsabellaInfluenza A(H9N2) Virus, Burkina FasoEmerging Infectious Diseases201723122118211910.3201/eid2312.171294
  • ProMED-mail. PRO/AH/EDR > Avian influenza (58): Ghana (BA) poultry, HPAI H9N2 not, LPAI H9N2, OIE ProMED-mail. Archive Number: 20180411.5739806 (2018).
  • Vorotnikov, V. Low-pathogenic AI strikes Russian Far East. Global Meat News.com.<https://www.globalmeatnews.com/Article/2018/05/25/Russia-to-cull-chickens-to-prevent-avian-flu-spreading> (2018).
  • News Desk. Ministry, FAO warn farmers of bird flu. The Jakarta Post.<http://www.thejakartapost.com/news/2018/07/06/ministry-fao-warn-farmers-of-bird-flu.html> (2018).
  • SorrellEMWanHArayaYSongHPerezDRMinimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virusProc. Natl. Acad. Sci. USA20091067565757010.1073/pnas.0900877106
  • LiXGenetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza virusesPLoS. Pathog.201410e100450810.1371/journal.ppat.1004508
  • PeirisMHuman infection with influenza H9N2Lancet199935491691710.1016/S0140-6736(99)03311-5
  • ShenYong-YiKeChang-WenLiQianYuanRun-YuXiangDanJiaWei-XinYuYun-DiLiuLuHuangCanQiWen-BaoSikkemaReinaWuJieKoopmansMarionLiaoMingNovel Reassortant Avian Influenza A(H5N6) Viruses in Humans, Guangdong, China, 2015Emerging Infectious Diseases20162281507150910.3201/eid2208.160146
  • ZhangPCharacterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002)J. Gen. Virol.2008893102311210.1099/vir.0.2008/005652-0
  • Banet-NoachCH9N2 influenza viruses from Israeli poultry: a five-year outbreakAvian Dis.20075129029610.1637/7590-040206R1.1
  • ParkKJRapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmesJ. Gen. Virol.201192365010.1099/vir.0.024992-0
  • WeiYAntigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009-2013 and selection of a candidate vaccine strain with broad cross-reactivityVet. Microbiol.20161821710.1016/j.vetmic.2015.10.031
  • ChambersTMKawaokaYWebsterRGProtection of chickens from lethal influenza infection by vaccinia-expressed hemagglutininVirology198816741442110.1016/S0042-6822(88)90103-1
  • HarveyWTIdentification of low- and high-impact hemagglutinin amino acid substitutions that drive antigenic drift of influenza A(H1N1) virusesPLoS. Pathog.201612e100552610.1371/journal.ppat.1005526
  • KoelBFSubstitutions near the receptor binding site determine major antigenic change during influenza virus evolutionScience201334297697910.1126/science.1244730
  • HensleySEHemagglutinin receptor binding avidity drives influenza A virus antigenic driftScience200932673473610.1126/science.1178258
  • AbeYEffect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutininJ. Virol.2004789605961110.1128/JVI.78.18.9605-9611.2004
  • DasSRFitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategyProc. Natl. Acad. Sci. USA2011108E1417E142210.1073/pnas.1108754108
  • LindermanSLPotential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013-2014 influenza seasonProc. Natl. Acad. Sci. USA2014111157981580310.1073/pnas.1409171111
  • KosikIInfluenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costsPLoS. Pathog.201814e100679610.1371/journal.ppat.1006796
  • LiYSingle hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clusteringJ. Virol.2013879904991010.1128/JVI.01023-13
  • PeacockTAntigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escapeSci. Rep.2016610.1038/srep18745
  • OkamatsuMSakodaYKishidaNIsodaNKidaHAntigenic structure of the hemagglutinin of H9N2 influenza virusesArch. Virol.20081532189219510.1007/s00705-008-0243-2
  • KaverinNVStructural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutantsJ. Virol.20047824024910.1128/JVI.78.1.240-249.2004
  • WanZAntigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sitesJ. Virol.2014883898390110.1128/JVI.03440-13
  • ZhuYIdentification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza virusesVet. Microbiol.201517814414910.1016/j.vetmic.2015.04.012
  • PingJSingle-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibodyBiochem. Biophys. Res. Commun.200837116817110.1016/j.bbrc.2008.04.045
  • WanHPerezDRAmino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cellsJ. Virol.2007815181519110.1128/JVI.02827-06
  • PeacockTPVariability in H9N2 haemagglutinin receptor-binding preference and the pH of fusionEmerg. Microbes Infect.20176e1110.1038/emi.2016.139
  • SangXAdaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory dropletsSci. Rep.2015510.1038/srep15928
  • SpiegelhalterDJBestNGCarlinBPVan Der LindeABayesian measures of model complexity and fitJ. R. Stat. Soc. Ser. B (Stat. Methodol.)20026458363910.1111/1467-9868.00353
  • TengQiaoyangXuDaweiShenWeixiaLiuQinfangRongGuangyuLiXuesongYanLipingYangJianmeiChenHongjunYuHaiMaWenjunLiZejunA Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in MiceJournal of Virology201690219806982510.1128/JVI.01141-16
  • ReeveRTracking the antigenic evolution of foot-and-mouth disease virusPLoS ONE201611e015936010.1371/journal.pone.0159360
  • HoffmannENeumannGKawaokaYHobomGWebsterRGA DNA transfection system for generation of influenza A virus from eight plasmidsProc. Natl. Acad. Sci. USA2000976108611310.1073/pnas.100133697
  • Peacock, T. P. et al. Immune escape variants of H9N2 influenza viruses containing deletions at the haemagglutinin receptor binding site retain fitness in vivo and display enhanced zoonotic characteristics. J. Virol. JVI.00218-17 (2017).
  • Webster, R., Cox, N. & Stöhr, K. WHO Manual on Animal Influenza Diagnosis and Surveillance. WHO Global Influenza Programme (2002).
  • Just Another Gibbs Sampler v3.3.0 (JAGS): a program for analysis of Bayesian graphical models using Gibbs sampling. (2012).
  • DenwoodMrunjags: Interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGSJ. Stat. Softw.20167112510.18637/jss.v071.i09
  • DrummondAJSuchardMAXieDRambautABayesian phylogenetics with BEAUti and the BEAST 1.7Mol. Biol. Evol.2012291969197310.1093/molbev/mss075
  • SuchardMAWeissRESinsheimerJSBayesian selection of continuous-time Markov chain evolutionary modelsMol. Biol. Evol.2001181001101310.1093/oxfordjournals.molbev.a003872
  • DrummondAJHoSYPhillipsMJRambautARelaxed phylogenetics and dating with confidencePLoS Biol.20064e8810.1371/journal.pbio.0040088
  • DrummondAJRambautAShapiroBPybusOGBayesian coalescent inference of past population dynamics from molecular sequencesMol. Biol. Evol.2005221185119210.1093/molbev/msi103
  • YuGSmithDKZhuHGuanYLamTTYggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated dataMethods Ecol. Evol.20178283610.1111/2041-210X.12628
  • lme4: linear mixed-effects models using ‘Eigen’ and S4. (2016).
  • R: a language and environment for statistical computing. Foundation for Statistical Computing (Vienna, Austria, 2016).
  • ReeveRSequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virusPLoS. Comput. Biol.20106e100102710.1371/journal.pcbi.1001027
  • Russell, S. & Norvig, P. in Artificial intelligence: A modern approach. (Pearson Education Limited, 1995).
  • HolmSA simple sequentially rejective multiple test procedureScand. J. Stat.197966570
  • The PyMOL Molecular Graphics System, Version 1.3r1 (2010).
  • HaYStevensDJSkehelJJWileyDCX-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogsProc. Natl. Acad. Sci. USA200198111811118610.1073/pnas.201401198