1,389
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Associating H2O2-and NO-related changes in the proteome of Mycobacterium smegmatis with enhanced survival in macrophage

, , , , , , & ORCID Icon show all
Pages 1-17 | Received 27 Jul 2018, Accepted 05 Nov 2018, Published online: 13 Dec 2018

References

  • BhatSAet al.The mechanism of redox sensing in Mycobacterium tuberculosisFree Radic. Biol. Med.201253 1625 164110.1016/j.freeradbiomed.2012.08.008
  • LeePPWet al.Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous diseasePediatr. Infect. Dis. J.20082722423010.1097/INF.0b013e31815b494c
  • GengenbacherMKaufmannSHEMycobacterium tuberculosis: success through dormancyFEMS Microbiol. Rev.20123651453210.1111/j.1574-6976.2012.00331.x
  • KumarAet al.Redox homeostasis in mycobacteria: the key to tuberculosis control?Expert. Rev. Mol. Med.20111312510.1017/S1462399410001729
  • LandesMBRajaramMVSNguyenHSchlesingerLSRole for NOD2 in Mycobacterium tuberculosis-induced iNOS expression and NO production in human macrophagesJ. Leukoc. Biol.2015971111111910.1189/jlb.3A1114-557R
  • D’AutréauxBToledanoMBROS as signalling molecules: mechanisms that generate specificity in ROS homeostasisNat. Rev. Mol. Cell Biol.2007881310.1038/nrm2256
  • Bhaskar, A. et al. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during Infection. PLoS. Pathog. 10, (2014).
  • BrugarolasPet al.The oxidation-sensing regulator (MosR) is a new redoxdependent transcription factor in Mycobacterium tuberculosisJ. Biol. Chem.2012287377033771210.1074/jbc.M112.388611
  • SinghAet al.Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survivalProc. Natl. Acad. Sci.2007104115621156710.1073/pnas.0700490104
  • Singh, A. et al. Mycobacterium tuberculosis WhiB3 Maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS. Pathog. 5, (2009).
  • den HengstCDButtnerMJRedox control in actinobacteriaBiochim. Biophys. Acta17801201–12162008
  • GarbeTRHiblerNSDereticVResponse of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediatesMol. Med.1996213414210.1007/BF03402209
  • VoskuilMIBartekILViscontiKSchoolnikGKThe response of Mycobacterium tuberculosis to reactive oxygen and nitrogen speciesFront. Microbiol.2011211210.3389/fmicb.2011.00105
  • LiXWuJHanJHuYMiKDistinct responses of mycobacterium smegmatis to exposure to low and high levels of hydrogen peroxidePLoS ONE201510e013459510.1371/journal.pone.0134595
  • Schubert, O. T. & Aebersold, R. in Prokaryotic Systems Biology (eds. Krogan PhD, N. J. & Babu PhD, M.) 235–254 (Springer International Publishing, 2015).
  • SchubertOTet al.Absolute proteome composition and dynamics during dormancy and resuscitation of mycobacterium tuberculosisCell. Host. Microbe2015189610810.1016/j.chom.2015.06.001
  • Cortes, T. et al. Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival. Sci. Rep. 7 1–9 (2017).
  • TyagiJSSharmaDMycobacterium smegmatis and tuberculosisTrends Microbiol.200210686910.1016/S0966-842X(01)02296-X
  • ShilohMUChampionPANIH Public Access.J. Health Commun.201014384399
  • ReyratJKahnDMycobacterium smegmatis: an absurd model for tuberculosis?Trends Microbiol.2001947347410.1016/S0966-842X(01)02168-0
  • Giddey, A. D. et al. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci. Rep.7, 43858 (2017).
  • Albeldas, C. et al. Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis. J. Proteomics. 180, 1–10 (2017).
  • HeWFrostMCDirect measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donorsRedox Biol.2016911410.1016/j.redox.2016.05.002
  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Meth.13, 731–40(2016).
  • Lipworth, S. et al. Defining dormancy in mycobacterial disease. 99, 131–42 (2016).
  • SchubertOTet al.NIH Public Access.201413602612
  • RamosJLet al.The TetR family of transcriptional repressorsMicrobiol. Mol. Biol. Rev.20056932635610.1128/MMBR.69.2.326-356.2005
  • Saini, D. K., Malhotra, V. & Tyagi, J. S. Cross talk between DevS sensor kinase homologue, Rvc, and DevR response regulator of Mycobacterium tuberculosis. 565, 75–80 (2004).
  • SainiDKet al.DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevRMicrobiology200415086587510.1099/mic.0.26218-0
  • TooleROet al.A two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatisSociety200318515431554
  • AnkisettypalliKChengJJYBakerENBashiriGPdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5′-phosphate oxidase familyFEBS Lett.201659045346010.1002/1873-3468.12080
  • MonahanIMBettsJBanerjeeDKButcherPDDifferential expression of mycobacterial proteins following phagocytosis by macrophagesMicrobiology200114745947110.1099/00221287-147-2-459
  • BanerjeeSKet al.Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infectionSci. Rep.2016611510.1038/s41598-016-0001-8
  • Russell, D. G., Rohde, K. H., Veiga, D. F. T. & Caldwell, S. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. Plos Pathog 8, e1002769 (2012).
  • NatarajVet al.Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillusMol. Microbiol.2015981310110.1111/mmi.13101
  • Takayama, K., Wang, C. & Besra, G. S. Pathway to synthesis and processing of mycolic acids in mycobacterium tuberculosis. Genetic analysis of synthesis and processing of mycolic acid. 18, 81–101 (2005).
  • SydorTet al.Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain lengthCell Microbiol.20131545847310.1111/cmi.12050
  • BoldrinFet al.The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivoJ. Bacteriol.2014196JB.0134613
  • Puzo, G., Brennan, P. J., Gicquel, B. & Jackson, M. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J. Biol. Chem. 277, 31335–31344 (2002).
  • RamagliLSQuantifying protein in 2-D PAGE solubilization buffersMethods Mol. Biol.199911299103
  • CoxJMannMMaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantificationNat. Biotech.2008261367137210.1038/nbt.1511
  • TyanovaSTemuTCoxJThe MaxQuant computational platform for mass spectrometry-based shotgun proteomicsNat. Protoc.201611230110.1038/nprot.2016.136
  • SzklarczykDet al.STRINGv10: protein–protein interaction networks, integrated over the tree of lifeNucleic Acids Res.201543D447D45210.1093/nar/gku1003
  • ClineMSet al.Integration of biological networks and gene expression data using CytoscapeNat. Protoc.200722366238210.1038/nprot.2007.324
  • WangJChenGLiMWuFPanYClusterViz: a Cytoscape APP for luster analysis of biologicalNetwork2014596318
  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids. Res.44, 457–462 (2016).
  • KaufmannSHEHow can immunology contribute to the control of tuberculosis?Nat. Rev. Immunol.20011203010.1038/35095558
  • VizcaínoJAet al.2016 update of the PRIDE database and its related toolsNucleic Acids Res.201644D447D45610.1093/nar/gkv1145