180
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Handling the complexities of the multi-constrained portfolio optimization problem with the support of a novel MOEA

ORCID Icon &
Pages 1609-1627 | Received 06 Oct 2016, Accepted 21 Feb 2017, Published online: 12 Dec 2017

References

  • Anagnostopoulos, K., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285–1297.
  • Babaei, S., Sepehri, M. M., & Babaei, E. (2015). Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research, 244(2), 525–553.
  • Baykasoğlu, A., Yunusoglu, M. G., & Burcin Özsoydan, F. (2015). A GRASP based solution approach to solve cardinality constrained portfolio optimization problems. Computers & Industrial Engineering, 90(1), 339–351.
  • Beasley, J. E. (1990). OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society, 41(11), 1069–1072.
  • Bertsimas, D., & Shioda, R. (2009). Algorithm for cardinality constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1–22.
  • Bloomfield, T., Leftwich, R., & Long, J. (1977). Portfolio strategies and performance. Journal of Financial Economics, 5(2), 201–218.
  • Branke, J., Scheckenbach, B., Stein, M., Deb, K., & Schmeck, H. (2009). Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. European Journal of Operational Research, 199(3), 684–693.
  • Cesarone, F., Scozzari, A. and Tardella, F. (2008). Efficient algorithms for mean–variance portfolio optimization with hard real-world constraints. In The 18th AFIR colloquium: Financial risk in a changing world, Rome.
  • Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13), 1271–1302.
  • Corazza, M., Fasano, G., & Gusso, R. (2013). Particle swarm optimization with non-smooth penalty reformulation, for a complex portfolio selection problem. Applied Mathematics and Computation, 224, 611–624.
  • Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems, 9(2), 115–148.
  • Deb, K., & Tiwari, S. (2008). Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 185(3), 1062–1087.
  • Evans, J. L., & Archer, S. H. (1968). Diversification and the reduction of dispersion: An empirical analysis. Journal of Finance, 23(5), 761–767.
  • Fisher, L., & Lorie, J. H. (1970). Some studies of variability of returns on investments in common stocks. Journal of Business, 43(2), 99–134.
  • Liagkouras, K., & Metaxiotis, K. (2013). An elitist polynomial mutation operator for improved performance of MOEAs in computer networks. In Computer communications and networks (ICCCN), 2013 22nd international conference on (pp. 1–5). doi:10.1109/ICCCN.2013.6614105
  • Liagkouras, K., & Metaxiotis, K. (2014). A new probe guided mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Systems with Applications, 41(14), 6274–6290.
  • Liagkouras, K., & Metaxiotis, K. (2015a). An experimental analysis of a new two-stage crossover operator for multiobjective optimization. Soft Computing, doi:10.1007/s00500-015-1810-6
  • Liagkouras, K., & Metaxiotis, K. (2015b). An experimental analysis of a new interval-based mutation operator. International Journal of Computational Intelligence and Applications, 14(3), 1550018. doi:10.1142/S1469026815500182
  • Liagkouras, K., & Metaxiotis, K. (2015c). Efficient portfolio construction with the use of multiobjective evolutionary algorithms: Best practices and performance metrics. International Journal of Information Technology & Decision Making, 14(3), 535–564.
  • Liagkouras, K., & Metaxiotis, K. (2015). Enhancing the performance of MOEAs: An experimental presentation of a new fitness guided mutation operator. Journal of Experimental & Theoretical Artificial Intelligence. doi:10.1080/0952813X.2015.1132260
  • Liagkouras, K., & Metaxiotis, K. (2015e). A new probe guided mutation operator for more efficient exploration of the search space: An experimental analysis. International Journal of Operational Research, 25(2), 212–251.
  • Lwin, K., Qu, R., & Kendall, G. (2014). A learning-guided multiobjective evolutionary algorithm for constrained portfolio optimization. Applied Soft Computing, 24, 757–772.
  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
  • Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685–11698.
  • Metaxiotis, K., & Liagkouras, K. (2013). A fitness guided mutation operator for improved performance of MOEAs electronics, circuits, and systems (ICECS). In 2013 IEEE 20th international conference on (pp. 751–754). doi:10.1109/ICECS.2013.6815523
  • Mishra, S. K., Panda, G., & Majhi, R. (2014). A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection. Swarm and Evolutionary Computation, 16, 38–51.
  • Mishra, S. K., Panda, G., & Majhi, B. (2016). Prediction based meanvariance model for constrained portfolio assets selection using multiobjective evolutionary algorithms. Swarm and Evolutionary Computation, 28(2016), 117–130.
  • Saborido, R., Ruiz, A. B., Bermúdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48–63.
  • Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimisation Methods & Software, 23(3), 411–420.
  • Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.
  • Streichert, F., Ulmer, H., & Zell, A. (2004a). Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem. In Proceedings of the Congress on evolutionary computation (CEC 2004), Portland (pp. 932–939).
  • Streichert, F., Ulmer, H., & Zell, A. (2004a). Comparing discrete and continuous genotypes on the constrained portfolio selection problem. In K. Deb et al. (Ed.), Genetic and evolutionary computation—GECCO 2004. Proceedings of the genetic and evolutionary computation conference. Part II, Lecture Notes in Computer Science (Vol. 3103, pp. 1239–1250). Seattle: Springer.
  • Vercher, E., & Bermúdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121–7131.
  • Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538–550.
  • Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2013). Portfolio rebalancing with an investment horizon and transaction costs. Omega, 41(2), 406–420.
  • Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.
  • Zhang, P., & Zhang, W. G. (2014). Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy Sets and Systems, 255(16), 74–91.
  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.
  • Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.
  • Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C. M., & Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.