5,154
Views
28
CrossRef citations to date
0
Altmetric
Empirical Research

Design and evaluation of a model-driven decision support system for repurposing electric vehicle batteriesFootnote

, , & | (Guest Editors) , (Guest Editors) & (Accepting Editor) show all
Pages 171-188 | Received 03 Jun 2015, Accepted 15 Jul 2016, Published online: 08 Dec 2017

References

  • Ahmadi, L., Fowler, M., Young, S. B., Fraser, R. A., Gaffney, B., & Walker, S. B. (2014). Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustainable Energy Technologies and Assessments, 8, 9–17.
  • Ahmadi, L., Young, S. B., Fowler, M., Fraser, R. A., & Achachlouei, M. A. (2017). Acascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. The International Journal of Life Cycle Assessment, 22(1), 111–121.
  • Akerlof, G. (1970). The market for ‘Lemons’: Quality uncertainty and the market mechanism. The Quarterly Journal of Economics, 87(3), 488–500.
  • Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Martin, K. (2009). An introduction to management science: Quantitative approaches to decision making (13th ed.). Mason, Ohio, USA: South-Western Cengage Learning.
  • Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412–424.
  • Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680–689.
  • Beer, S., Gómez, T., Dallinger, D, Momber, I., Marnay, C., Stadler, M., & Lai, J. (2012). An economic analysis of used electric vehicle batteries integrated into commercial building microgrids. IEEE Transactions on Smart Grid, 3(1), 517–525.
  • Beverungen, D., Bräuer, S, Plenter, F, Klör, B, & Monhof, M (2017). Ensembles of context and form for repurposing electric vehicle batteries: An exploratory study. Computer Science-Research and Development, 32(1), 195–209.
  • Bondy, J. A., & Murty, U. S. R. (2008). Graph theory. Berlin, Heidelberg, Germany: Springer.
  • Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev, K., & Staniewicz, R. J. (2005). Main aging mechanisms in Li ion batteries. Journal of Power Sources, 146, 90–96.
  • Burke, A. F. (2009). Performance, charging, and second-use considerations for lithium batteries for plug-in electric vehicles. Davis, California, USA: Technical Report. Institute of Transportation Studies, University of California.
  • Chinchor, N. (1991). MUC-3 evaluation metrics. I Proceedings of the 3rd Conference on Message UnderstandingMUC3’91 (pp. 22–29).
  • Chouinard, M., D’Amours, S., & Äit-Kadi, D. (2005). Integration of reverse logistics activities within a supply chain information system. Computers in Industry, 56(1), 105–124.
  • Cready, E., Lippert, J., Pihl, J., Weinstock, I., & Symons, P. (2003). Technical and economic feasibility of applying used EV batteries in stationary applications. Albuquerque, NM: Technical Report, Sandia National Laboratories.
  • Diestel, R. (2000). Graph theory (2nd ed.). New York, NY: Springer.
  • Ebner, M., Marone, F., Stampanoni, M., & Wood, V. (2013). Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science, 342(6159), 716–720.
  • Elkind, E. N. (2014). Reuse and repower—How to save money and clean the grid with second-life electric vehicle batteries. Los Angeles, CA: Technical Report, UCLA School of Law.
  • The Electropedia. (2015) Battery life (and death). [Online] Retrieved April 27, 2005, from http://www.mpoweruk.com/life.htm
  • European Committee For Electrotechnical Standardization. (2011). EN 50160: Voltage characteristics of electricity supplied by public distribution systems.
  • EVWorld.Com Inc. (2011). Lithium battery recycling expected to reach $2B By 2022. Retrieved April 21, 2015, from http://evworld.com/news.cfm?newsid=25315
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.
  • Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A., & van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103(1), 1–17.
  • Gohla-Neudecker, B., Bowler, M., & Mohr, S. (2015). Battery 2nd life: Leveraging the sustainability potential of EVs and renewable energy grid integration. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP) (pp. 311–318).
  • Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS Quarterly, 37(2), 337–356.
  • Gregor, S., & Jones, D. (2007). The anatomy of a design theory. Journal of the Association for Information Systems, 8(5), 312–335.
  • Guide, V., Harrison, T., & van Wassenhove, L. (2003). The challenge of closed-loop supply chains. Interfaces, 33(6), 3–6.
  • Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.
  • Hillier, F. S., & Lieberman, G. J. (2000). Introduction to operations research (7th ed.). New York, NY: McGraw-Hill Higher Education.
  • Holsapple, C. W. (2008). DSS architecture and types. In Handbook on decision support systems 1: Basic themes (pp. 163–190. Berlin, Heidelberg, Germany Springer.
  • Howard, B. (2013). GM turns your old Chevy volt battery into a whole-house UPS|ExtremeTech. Retrieved April 21, 2015, from http://www.extremetech.com/extreme/155589-gm-turns-your-old-chevy-volt-battery-into-a-whole-house-ups
  • Keen, P. G. W. (1980). Adaptive design for decision support systems. ACM SIGOA Newsletter, 1(4–5), 15–25.
  • Klör, B., Beverungen, D., Bräuer, S., Plenter, F, & Monhof, M. (2015). A market for trading used electric vehicle batteries—theoretical foundations and informations systems. In Proceedings of the Twenty-Third European Conference on Information Systems (ECIS 2015) (pp. 1–18). Münster.
  • Klör, B., Bräuer, S., Beverungen, D., & Monhof, M. (2015). A domain-specific modeling language for electric vehicle batteries. In Proceedings of the International Conference on Wirtschaftsinformatik 2015 (pp. 1038–1054). Osnabru¨ck.
  • Knowles, M., & Morris, A. (2014). Impact of second life electric vehicle batteries on the viability of renewable energy sources. British Journal of Applied Science and Technology, 4(1), 152–167.
  • Lache, R., Nolan, P., & Crane, J. (2008). Electric Cars: Plugged in batteries must be included. FITT Research Report: Deutsche Bank.
  • Linstone, H. A., & Turoff, M. (1975). The Delphi method—techniques and applications. Reading, Massachusetts, USA: Addison-Wesley.
  • March, S. T. & Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266.
  • Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta, 405(2), 442–451.
  • Mokyr, J. (2002). The gifts of Athena: Historical origins of the knowledge economy (5th ed.). Princeton, New Jersey, USA: Princeton University Press.
  • Monhof, M., Beverungen, D., Klör, B., & Bräuer, S. (2015). Extending battery management systems for making informed decisions on battery reuse. In B. Donnellan, M. Helfert, J. Kenneally, D. VanderMeer, M. Rothenberger, & R. Winter (Eds.), New Horizons in design science: Broadening the research Agenda (pp. 447–454). Dublin, Ireland: Springer International Publishing.
  • Narula, C. K., Martine, Z. R., Onar, O., Starke, M. R., Andrews, G., & Laboratoryorn. (2011). Final reportEconomic analysis of deploying used batteries in power systems. Oak Ridge, Tennessee, USA.
  • Nunamaker Jr., J. F., & Chen, M (1990). Systems development in information systems research. Twenty-Third Annual Hawaii International Conference on System Sciences, iii(3), 89–106.
  • Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5(4), 329–332.
  • Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An example, design considerations and applications. Information & Management, 42(1), 15–29.
  • Paas, F. G. W. C., & Van Merrie¨nboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351–371.
  • Patten, J., Christensen, N., Nola, G., & Srivastava, S. (2011). Electric vehicle battery—wind storage system. In 2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011 (pp. 1–3).
  • Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2008). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.
  • Pillot, C. (2012). The worldwide battery market 2011-2025. Retrieved April 21, 2015, from http://www.kigeit.org.pl/FTP/PRCIP/Literatura/063_The_worldwide_battery_market_2011_2025.pdf
  • Plummer, M. D. (1992). Matching theory—a sampler: From Dénes König to the present. Discrete Mathematics, 100, 177–219.
  • Power, D. J. (2000). Web-based and model-driven decision support systems: concepts and issues. In AMCIS 2000 Proceedings. Paper 387 (pp. 352–355.
  • Power, D. J. (2004). Specifying an expanded framework for classifying and describing decision support systems. Communications of the Associa-tion for Information Systems Volume (CAIS), 13(Article 13), 158–166.
  • Power, D. J., & Sharda, R. (2007). Model-driven decision support systems: Concepts and research directions. Decision Support Systems, 43(3), 1044–1061.
  • Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1), 37–63.
  • Price, B., Dietz, E., & Richardson, J. (2012). Life cycle costs of electric and hybrid electric vehicle batteries and End-of-Life uses. In IEEE International Conference on Electro Information Technology (pp. 1–7).
  • PRNewswire. (2014). Second-life batteries: From PEVs to stationary applications. Retrieved April 21, 2015, from http://www.prnewswire.com/news-releases/second-life-batteries-from-pevs-to-stationary-applications-242205851.html
  • Prüggler, W. (2012). The impact of second life applications of electric vehicle batteries on customer’s mobility cost. In Proceedings of the 12th Symposium EnergieinnovationAlternativen fu¨r die Energiezukunft Europas.
  • Rahimifard, A., Newman, S. T., & Rahimifard, S. (2004). A web-based information system to support end-of-life product recovery. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(9), 1047–1057.
  • van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). Newton, MA, USA: Butterworth-Heinemann Ltd.
  • Sachenbacher, M., Mayer, T., Leucker, M., Brand, M., & Jossen, A. (2012). Towards 2nd-Life application of Lithium-Ion batteries for stationary energy storage in photovoltaic systems. In Proceedings of the ‘International Conference on Solar Energy for MENA Region (INCOSOL)’ (pp. 22–23). Amman, Jordan.
  • Sasaki, T., Ukyo, Y., & Novàk, P. (2013). Memory effect in a lithium-ion battery. Nature Materials, 12(6), 569–575.
  • Schlick, T., Hertel, G., Hagemann, B., & Maiser, E. (2011). Zukunftsfeld Elektromobilität—Chancen und Herausforderungen für den deutschen Maschinen- und Anlagenbau. Technical Report, Roland Berger Strategy Consultants.
  • Schrijver, A. (2003). Combinatorial optimization—Polyhedra and efficiency (1st ed.). Berlin, Heidelberg, Germany: Springer.
  • Seitz, M. A. (2007). A critical assessment of motives for product recovery: The case of engine remanufacturing. Journal of Cleaner Production, 15(11–12), 1147–1157.
  • Sen, A., & Biswas, G. (1985). Decision support systems: An expert systems approach. Decision Support Systems, 1(3), 197–204.
  • Shahan, Z. (2014). The electric car revolutionWhy electric cars are likely to dominate in the next decade. Retrieved April 21, 2015, from http://www.fix.com/blog/why-buy-electric-cars/
  • Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002). Past, present, and future of decision support technology. Decision Support Systems, 33(2), 111–126.
  • Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138.
  • Simon, H. A. (1977). The new science of management decision. Englewood Cliffs, New Jersey, USA: Prentice Hall.
  • Sprague, Jr., R. H. (1980). A framework for the development of decision support systems. MIS Quarterly, 4(4), 1–26.
  • Sprague, Jr., R. H., & Carlson, E. D. (1982). Building effective decision support systems. Prentice Hall Professional Technical Reference.
  • Staikos, T., & Rahimifard, S. (2007). An end-of-life decision support tool for product recovery considerations in the footwear industry. International Journal of Computer Integrated Manufacturing, 20(6), 602–615.
  • St. John J. (2015). Nissan, green charge networks turn second-life EV batteries into grid storage business|Greentech media. Retrieved February 25, 2016, from http://www.greentechmedia.com/articles/read/nissan-green-charge-networks-turn-second-life-ev-batteries-into-grid-storag
  • Taha, H. A. (2010). Operations research: An introduction (9th ed.). Upper Saddle River, New Jersey, USA: Prentice Hall.
  • Thierry, M., Salomon, M., van Nunen, J., & van Wassenhove, L. (1995). Strategic issues in product recovery management. California Management Review, 37(2), 114–135.
  • Vanderbei, R. J. (2008). Linear programming—Foundations and extensions (3rd ed.). Berlin, Heidelberg, Germany: Springer.
  • Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: A framework for valuation in design science research. European Journal of Information Systems, 25(1), 77–89.
  • Waag, W., Käbitz, S., & Sauer, D. U. (2013). Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Applied Energy, 102, 885–897.
  • Wadhwa, S., Madaan, J., & Chan, F. T. S. (2009). Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection. Robotics and Computer-Integrated Manufacturing, 25(2), 460–469.
  • Walls, J. G., Widmeyer, G. R., & el Sawy, O. A. (1992). Building an information system design theory for vigilant EIS. Information Systems Research, 3(1), 36–59.