29
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Rod photoreceptor maturation does not vary with retinal eccentricity in mammalian retina

, , , &
Pages 393-402 | Published online: 02 Jul 2009

References

  • Young RW. Cell proliferation during postnatal develop-ment of the retina in the mouse. Develop Brain Res. 1985;21:229–239.
  • Young RW. Cell differentiation in the retina of the mouse.The Anatomical Record. 1985;212:199–205.
  • LaVail MM, Rapaport DH, Rakic P. Cytogenesis in the monkey retina. J Comp Neurol. 1991;309:86–114.
  • Carter Dawson LD, LaVail MM. Rods and cones in the mouse retina. II. Autoradiographic analysis of cell gen-eration using tritiated thymidine. J Comp Neurol. 1979;188:263–272.
  • Holt CE, Bertsch TW, Ellis HM, Harris WA. Cellular determination in the xenopus retina is independent of lineage and birth date. Neuron. 1988;1:15–26.
  • Sidman RL. Histogenesis of mouse retina studied with thymidine-H3. In: Smelser GK, ed. Structure of the Eye. New York: Academic Press; 1961:487–506.
  • LaVail MM. Kinetics of rod outer segment renewal in the developing mouse retina. J Cell Biol. 1973;58:650–661.
  • Diazaraya C, Provis JM. Evidence of photoreceptor migration during early foveal development - a quanti-tative analysis of human fetal retinae. Visual Neurosci. 1992;8:505–514.
  • Dorn EM, Hendrickson L, Hendrickson AE. The appear-ance of rod opsin during monkey retinal development. Invest Ophthalmol Vis Sci. 1995;36:2634–2651.
  • Raymond PA, Barthel LK, Curran GA. Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. J Comp Neurol. 1995;359:537–550.
  • Schmitt EA, Dowling JE. Comparison of topographical patterns of ganglion and photoreceptor cell differentia-tion in the retina of the zebrafish, Danio redo. J Comp Neurol. 1996;371:222–234.
  • Grun G. The development of the vertebrate retina: a comparative survey. Adv Anat Embryol Cell Biol. 1982;78:1–85.
  • Bonting SL, Caraviggio LL, Gouras P. The rhodopsin cycle in the developing vertebrate retina. i. relation of rhodopsin content, electroretinogram and rod structure in the rat. Exp Eye Res. 1961;1:14–21.
  • Dowling J, Sidman R. Inherited retinal dystrophy in the rat. J Cell Biol. 1962;14:73–109.
  • Wilder KC, Rakic P. Relation of an array of early-dif-ferentiating cones to the photoreceptor mosaic in the primate retina. Nature. 1991;351:397–400.
  • Johnson AT, Kretzer FL, Hittner HM, Glazebrook PA, Bridges CDB, Lam DMK. Development of the subretinal space in the preterm human eye - ultrastructure and im-munocytochemical studies. J Comp Neurol. 1985;233: 497–505.
  • Ratto GM, Robinson DW, Yan B, McNaughton PA. Development of the light response in neonatal mamma-lian rods. Nature. 1991;351:654–657.
  • Saha MS, Grainger RM. Early opsin expression in xenopus embryos precedes photoreceptor differentiation. Molecul Brain Res. 1993;17:307–318.
  • Fulton AB, Hansen RM, Findl 0. The development of the rod photoresponse from dark-adapted rats. Invest Ophthalmol Vis Sci. 1995;36:1038–1045.
  • Timmers AM, Wintjes ET, Hauswirth WW. Fetal topog-raphy of bovine rhodopsin mRNA suggests retinotopo-graphically determined gene expression. Invest Ophthal-mol Vis Sci. 1995;36:2008–2019.
  • Morrow EM, Belliveau MJ, Cepko CL. Two phases of rod photoreceptor differentiation during rat retinal de-velopment. J Neurosci. 1998;18:3738–3748.
  • Treisman JE, Morabito MA, Barnstable CJ. Opsin ex-pression in the rat retina is developmentally regulated by transcriptional activation. Molec Cell Biol. 1988;8: 1570–1579.
  • Fox DA, Rubinstein SD. Age-related changes in retinal sensitivity, rhodopsin content and rod outer segment length in hooded rats following low-level lead exposure during development. Exp Eye Res. 1989;48:237–249.
  • DesJardin LE, Lockwood MK, Hauswirth WW. Bovine opsin gene expression exhibits a late fetal to adult regu-latory switch. J Neurosci Res. 1995;40:728–736.
  • van Ginkel PR, Timmers AM, Szel A, Hauswirth WW. Topographical regulation of cone and rod opsin genes: parallel, position dependent levels of transcription. Brain Res Dev Brain Res. 1995;89:146–149.
  • Hauswirth WW, Langerijt AV, Timmers AM, Adamus G, Ulshafer RJ. Early expression and localization of rhodopsin and interphotoreceptor retinoid-binding pro-tein (IRBP) in the developing fetal bovine retina. Exp Eye Res. 1992;54:661–670.
  • Hendrickson A, Drucker D. The development of para-foveal and mid-peripheral human retina. Behav Brain Res. 1992;49:21–31.
  • Hendrickson AE, Yuodelis C. The morphological devel-opment of the human fovea. Ophthalmol. 1984;91:603–612.
  • Fox DA, Chu LW. Rods are selectively altered by lead: II. Ultrastructure and quantitative histology. Exp Eye Res. 1988;46:613–625.
  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979; 18:5294–5299.
  • al Ubaidi MR, Pittler SJ, Champagne MS, Triantafyllos JT, McGinnis JF, Baehr W. Mouse opsin. Gene struc-ture and molecular basis of multiple transcripts. J Biol Chem. 1990;265:20563–20569.
  • Winkler BS. The electroretinogram of the isolated rat retina. Vision Res. 1972;12:1183–1198.
  • Hoglund G, Nilsson SE, Schwemer J. Visual pigment and visual receptor cells in fetal and adult sheep. Invest Oph-thalmol Vis Sci. 1982;23:409–418.
  • Fulton AB, Dodge J, Hansen RM, Schremser JL, Will-iams TP. The quantity of rhodopsin in young human eyes. Curr Eye Res. 1991;10:977–982.
  • Weidman TA, Kuwabara T. Postnatal development of the rat retina. An electron microscopic study. Arch Ophthal-mol. 1968;79:470–484.
  • Braekevelt CR, Hollenberg MJ. The development of the retina of the albino rat. Am J Anat. 1970;127:281–301.
  • Packer 0, Hendrickson AE, Curcio CA. Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J Comp Neurol. 1989;288:165–183.
  • Gonzalezfernandez F, Vanniel E, Edmonds C, Beaver H, Nickerson JM, Garciafernandez JM, Campohiaro PA, Foster RG. Differential expression of interphotoreceptor retinoid-binding protein, opsin, cellular retinaldehyde-binding protein, and basic fibroblastic growth factor. Exp Eye Res. 1993;56:411–427.
  • Raymond P. Cell determination and positional cues in the teleost retina: development of photoreceptors and horizontal cells. In: Lam D, Shatz C, eds. Developm Vis System. Cambridge, Massachuchets: The MIT Press; 1991:59–78.
  • Bruhn SL, Cepko CL. Development of the pattern of photoreceptors in the chick retina. J Neurosci. 1996; 16:1430–1439.
  • Altshuler D, Cepko C. A temporally regulated, diffus-ible activity is required for rod photoreceptor develop-ment invitro. Development. 1992;114:947–957.
  • Cepko CL, Austin CP, Yang XJ, Alexiades M. Cell fate determination in the vertebrate retina. Proc Nat Acad Sci. 1996;93:589–595.
  • Cepko CL. The patterning and onset of opsin expression in vertebrate retinae. Curr Opin Neurobiol. 1996;6:542–546.
  • Kelley MW, Turner JK, Reh TA. Retinoic acid promotes differentiation of photoreceptors in vitro. Development. 1994;120:2091–2102.
  • Kelley MW, Turner JK, Reh TA. Regulation of prolif-eration and photoreceptor differentiation in fetal human retinal cell cultures. Invest Ophthalmol Vis Sci. 1995; 36:1280–1289.
  • Watanabe T, Raff MC. Diffusible rod-promoting signals in the developing rat retina. Development. 1992;114:899–906.
  • Watanabe T, Voyvodic JT, Chanling T, Sagara H, Hiro-sawa K, Mio Y, Matsushima S, Uchimura H, Nakahara K, Raff MC. Differentiation and morphogenesis in pel-let cultures of developing rat retinal cells. J Comp Neurol. 1997;377:341–350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.