50
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The representation of the visual field in the occipital striate cortex

, &
Pages 55-78 | Published online: 08 Jul 2009

References

  • Inouye T. Die Sehstorungen bei Schussverletzungen der kortikalen Sehsphare nach Beobachtungen an Verwundeten der letzten Japanischen Kriege. Leipzig, Germany: W Engelmann, 1909.
  • Glickstein M. The discovery of the visual cortex. Sci Am. 1988;259:118–127.
  • Glickstein M, Whitteridge D. Tatsuji Inouye and the mapping of the visual fields on the human cerebral cortex. TINS. I 987 ; I 0:350–353.
  • Holmes G, Lister WT. Disturbances of vision from cerebral lesions with special reference to the cortical representation of the macula. Brain. 1916;39:34–73.
  • Holmes G. Disturbances of vision by cerebral lesions. Br J Ophthalmol. 1918;2:353–384.
  • Talbot SA, Marshall WA. Physiological studies on neural mechanisms of visual localisation and discrimination. Am J Ophthalmol. 194124: 1255–1264.
  • Daniel PN, Whitteridge D. The representation of the visual field on the cerebral cortex in monkeys. J Physiol (Lond). 1961;159:203–221.
  • Van Essen DC, Newsome WT, Maunsell HR. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 19424.429–448.
  • Dow BM, Vautin RG, Bauer R. The mapping of visual space onto foveal striate cortex in the macaque monkey. J Neurosci. 1985;5:890–902.
  • Hubel DH, Wiesel TN. Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol. 1974;158:295–305.
  • Zilles K, Clarke S. Architecture, connectivity, and transmitter receptors of human extrastriate visual cortex: comparison with nonhuman primates. In: Rockland KS, Kaas JH, Peters A, editors. Cerebral cortex. New York, London: Plenum Press, 1997; Vol. 12, 673–742.
  • Clark VP, Courchesne E, Grafe M. In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex. 1992;2:417–424.
  • Barbier EL, Marrett S, Danek A, Vortmayer A, Van Gelderen P, Duyn J, et al. Imaging cortical anatomy by high-resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magn Reson Med. 2002;48: 735–738.
  • Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, et al. Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimen at 9.4 Testa. Am J Neuro-Radiol. 2002;23:1313-132 I .
  • Horton JC, Dagi LR, McCrane EP, DeMonasterio FM. Arrangement of ocular dominance columns in human visual cortex. Arch Ophthalmol. I 990; I o8:1025-103i.
  • McFadzean R, Brosnahan D, Hadley D, Mutlukan E. Representation of the visual field in the occipital striate cortex. Br J Ophthalmol. 1994;78:185–190.
  • Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med. 1990;16:9–18.
  • Menon RS, Ogawa S, Tank DW, Ugurbil K. Testa gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med. 1993;3o:38o–386.
  • Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, et al. Imaging at high magnetic fields: initial experiences at 4T. Magn Reson Q. 1993;9:259–277.
  • Menon RS, Ogawa S, Kim SG, Ellermann JM, Merkle H, Tank DW, et al. Functional brain mapping using magnetic resonance imaging. Signal changes accompanying visual stimulation. Invest Radiol. 1992;27(Suppl 2): S47–53.
  • Kim SG, Ugurbil K. Comparison of blood oxygenation and cerebral blood flow effects in fIVIRI: estimation of relative oxygen consumption change. Magn Reson Med. 1997;38:59–65.
  • Tootell RBH, Hadjikhani NK, Vanduffel W, Liu AK, Mendota JD, Sereno MI, et al. Functional analysis of primary visual cortex (VI) in humans. Proc Natl Acad Sci USA. 1998;95:811–817.
  • Kraut MA, Marenco S, Soher BJ, Wong DF, Bryan RN. Comparison of functional MR and H2r50 positron emission tomography in stimulation of the primary visual cortex. Am J Neuro-Radiol. 1995; 16:2101–2107.
  • Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage. 1996;4: 1–15.
  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fIVIRI signal. Nature. 2001;412:150–157.
  • Moser E, Teichtmeister C, Diemling M. Reproducibility and post-processing of gradient-echo functional MRI to improve localisation of brain activity in the human visual cortex. Magn Reson Imaging. 1996;14:567–579.
  • Baumgartner R, Scarth G, Teichtmeister C, Somorjai R, Moser E. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex, part I: reproducibility. J Magn Reson Imaging. 1997;7: 1094–1101.
  • Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Valk J, Scheltens P. Test-retest analysis with functional MR of the activated area in the human visual cortex. Am J Neuro-Radiol. 1997; 18:1317–1322.
  • Rombouts SA, Barkhof E, Hoogenraad FG, Sprenger M, Scheltens P. Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echoplanar imaging. Magn Reson Imaging. 1998;16:105–113.
  • Miki A, Raz J, Van Erp TGM, Liu C-SJ, Haselgrove JC, Liu GT. Reproducibility of visual activation in functional MR imaging and effects of post-processing. Am J Neuro-Radiol. 2000;21:910–915.
  • Miki A, Liu GT, Englander SA, Raz J, Van Erp TGM, Modestino EJ, et al. Reproducibility of visual activation during checkerboard stimulation in functional magnetic resonance imaging at 4 Testa. Jpn J Ophthalmol. 2001;45: 151–'55.
  • Buchel C, Josephs 0, Rees G, Turner R, Frith CD, Friston KJ. The functional anatomy of attention to visual motion. A functional MRI study. Brain. 1998;121:1281–1294.
  • Watanabe T, Sasaki Y, Miyauchi S, Putz B, Fujimaki N, Nielsen M, et al. Attention-regulated activity in human primary visual cortex. J Neurophysiol. 1998;79:2218–2221.
  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci. 1999;2:364–369.
  • Somers DC, Dale AM, Seiffert AE, Tootell RBH. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc Natl Acad Sci USA. 1999;96:1663–1668.
  • Vanduffel W, Tootell RBH, Orban GA. Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cereb Cortex. 2000; 10:109–126.
  • Hedera P, Wu D, Collins S, Lewin JS, Miller D, Lerner AJ, et al. Sex and electroencephalographic synchronisation after photic stimulation predict signal changes in the visual cortex on functional MR images. Am J Neuro-Radiol. 1998;19:853–857.
  • Levin JM, Ross MH, Mendelson JH, Mello NK, Cohen BM, Renshaw PF. Sex differences in blood-oxygenation-level-dependent functional MRI with primary visual stimulation. Am J Psychiatry. 1998; 155:434–436.
  • Lang PJ, Bradley MM, Fitzsimmons JR, Cuthbert BN, Scott JD, Moulder B, et al. Emotional arousal and activation of the visual cortex: an fIVIRI analysis. Psychophysiology. 1998;35:199–210.
  • Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human VI. J Neurosci. 1996;16:4207–4221.
  • Goodyear BG, Menon RS. Effect of luminance contrast on BOLD fIVIRI response in human primary visual areas. J Neurophysiol. 1998; 79:2204–2207.
  • Miki A, Liu GT, Goldsmith ZG, Zhou L, Siegfried J, Hulvershorn J, et al. Effects of check size on visual cortex activation studied by functional magnetic resonance imaging. Ophthalmic Res. 2001;33: 180–184.
  • Frahm J, Bruhn H, Merboldt K, Hanicke W. Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging. 1992;2:501–505.
  • Hathout JM, Kirlew KAT, So GJK, Hamilton DR, Zhang JX, Sinha U, et al. MR imaging signal response to sustained stimulation in human visual cortex. J Magn Reson Imaging. 1994;4:537–543.
  • Frahm J, Kruger G, Merboldt K, Kleinschmidt A. Dynamic uncoupling and re-coupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med. 1996;35: 143–148.
  • Kruger G, Kleinschmidt A, Frahm J. Dynamic MRI sensitised to cerebral blood oxygenation and flow during sustained activation of human visual cortex. Magn Reson Med. 1996;35:797–800.
  • Bandettini PA, Kwong KK, Davis TL, Tootell RB, Wong EC, Fox PT, et al. Characterisation of cerebral blood oxygenation and flow changes during prolonged brain activation. Hum Brain Map. 1997;5: 93–109.
  • Condon B, McFadzean R, Hadley DM, Bradnam MS, Shahani Habituation-like effects cause a significant decrease in response in MRI neuro-activation during visual stimulation. Vision Res. 1997;37: 1243–1247.
  • Fransson P, Kruger G, Merboldt KD, Frahm J. A comparative FLASH and EPI study of repetitive and sustained visual activation. NMR Biomed. 1997;10:204–207.
  • Howseman AM, Porter DA, Hutton C, Josephs 0, Turner R. Blood oxygenation level dependent signal time courses during prolonged visual stimulation. Magn Reson Imaging. 1998;16:I—II.
  • Horton JC, Hocking DR. Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci. 1996;16:7228–7339.
  • Olavarria SF, Van Essen DC. The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cereb Cortex 1997;7:395–404.
  • Van Essen DC, Drury HA, Joshi S, Miller MI. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci USA. 1998;95:788–795.
  • De Yoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA. 1996;93:2382–2386.
  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995;268:889–893.
  • Van Essen DC, Maunsell JHR. Two-dimensional maps of the cerebral cortex. J Comp Neurol. 1980;191:255–281.
  • Drury HA, Van Essen DC, Anderson CH, Lee CW, Coogan TA, Lewis JW. Computerised mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci. 1996;8: 1–28.
  • Tootell RBH, Dale AM, Sereno MI, Malach R. New images from human visual cortex. TINS. 1996;19: 481–489.
  • Van Essen DC, Drury HA. Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci. 1997;17:7079–7102.
  • Trauzettel-Klosinski S, Reinhard J. The vertical border in hemianopia and its significance for fixation and reading. Invest Ophthalmol Vis Sci. 1998;39:2177–2186.
  • Spalding JMD. Wounds of the visual pathway. II. The striate cortex. J Neurol Neurosurg Psychiatry. 1952;15:169–183.
  • Horton JC, Hoyt WE The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol. 1991;109:816–824.
  • Hoyt WF, Newton TH. Angiographic changes with occlusion of arteries that supply the visual cortex. NZ Med J. 1970;72: 310–317.
  • Smith CG, Richardson WFG. The course and distribution of the arteries supplying the visual (striate) cortex. Am J Ophthalmol. 1966;61:1391–1396.
  • Margolis MT, Newton TH, Hoyt WE Cortical branches of the posterior cerebral artery. Anatomic-radiologic correlation. Neuroradiology. 1971;2: I 27–135.
  • Stensaas SS, Eddington DK, Dobelle WA. The topography and variability of the primary visual cortex in man. J Neurosurg. 1974; 40:747–755.
  • On LS, Schatz NJ, Gonzalez CF, Savino PJ, Corbett JJ. Computerised axial tomography in evaluation of occipital lobe lesions. In: Smith JL, editor. Neuro-ophthalmology update. New York: Masson, 1977;351–367.
  • McAuley DL, Russell RWR. Correlation of CAT scan and visual field defects in vascular lesions of the posterior visual pathway. J Neurol Neurosurg Psychiatry. 1979;42:298-3 I I .
  • Kattah JC, Dennis P, Kolsky MP, Schellinger D, Cohan SL. Computed tomography in patients with homonymous visual field defects: a clinico-radiologic correlation. Comp Tomogr. 1981;5: 301–312.
  • Spector RH, Glaser JS, David NJ, Vining DQ. Occipital lobe infarctions: perimetry and computed tomography. Neurology. 1981;31:1098—I ro6.
  • Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME. Retinotopic organisation of human visual cortex mapped with positron emission tomography. J Neurosci. 1987;7:913–922.
  • Mora BN, Carman CJ, Allman JM. In vivo functional localisation of the human visual cortex using positron emission tomography and magnetic resonance imaging. TINS. 1989;12:282–284.
  • Yiannikas C, Walsh JC. The variation of the pattern shift visual evoked response with the size of the stimulus field. Electroencephalogr Clin Neurophysiol. 1983;55:427–435.
  • Penfield W, Evans JP, Macmillian JA. Visual pathway in man: with particular reference to macular representation. Arch Neurol Psychiatry. 1935;33:816–834.
  • Halstead WC, Walker AE, Bucy PC. Sparing and non-sparing of 'macular' vision associated with occipital lobectomy in man. Arch Ophthalmol. 1940;24:948–966.
  • Dubois-Poulsen A, Magis C, de Ajuriaguerra J, Hecaen H. Les consequences visuelles de la lobectomie occipital chez l'homme. Ann Ocul. 1952;185:305–347.
  • Huber A. Homonymous hemianopia after removal of one occipital lobe. Excerpta Med Intl Congr Ser. 1970;222:1333–1343.
  • Stone J, Leicester J, Sherman SM. The naso-temporal division of the monkey's retina. J Comp Neurol. 1973;150:333–348:
  • Bunt AH, Minckler DS, Johanson GW. Demonstration of bilateral projection of the central retina of the monkey with horseradish peroxidase neuronography. J Comp Neurol. 1977;171:619–630.
  • Bunt AH, Minckler DS. Foveal sparing: new anatomical evidence for bilateral representation of the central retina. Arch Ophthalmol. 1977;95:1445–1447.
  • Leventhal EG, Ault SJ, Vitek DJ. The naso-temporal division in primate retina: the neural basis of macular sparing and splitting. Science. 1988;240:66–67.
  • Fukuda Y, Sawai H, Watanabe M, et al. Naso-temporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci. 1989;9:2353–2373.
  • Tootell RBH, Switkes E, Silverman MS, Hamilton SL. Functional anatomy of macaque striate cortex. II. Retinotopic organisation. J Neurosci. 1988;8:1531–1568.
  • Jung R, Kornhuber HH. Results of electro-nystagmography in man: the value of opticokinetic, vestibular and spontaneous nystagmus for neurologic diagnosis and research. In: Bender MB, editor. The oculomotor system. New York: Hoeber Medical Division, Harper and Row, 1964; 428–482.
  • Winterson BJ, Collewign H. Microsaccades during finely guided visuomotor tasks. Vision Res. 1976;16:1387–1390.
  • Dell'Osso LF, Abel LA, Daroff RB. 'Inverse latent' macro square wave jerks and macrosaccadic oscillations. Ann Neurol. 1977;2:57-6o.
  • Herishanu YO, Sharpe JA. Normal square wave jerks. Invest Ophthalmol Vis Sci. 1981;20:268–272.
  • Endo S, Toyama H, Kimura Y, Ishii K, Senda M, Kiyosawa M, et al. Mapping visual field with positron emission tomography by mathematical modeling of the retinotopic organisation in the calcarine cortex. IEEE Trans Med Imaging. 1997;16:252–260.
  • Brecelj J, Kakigi R, Koyama S, Hoshiyama M. Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings. Brain Topogr. 1998;10:227–237.
  • Wong AMF, Sharpe JA. Representation of the visual field in the human occipital cortex: a magnetic resonance imaging and perimetric correlation. Arch Ophthalmol. 1999;117:208–217.
  • Korogi Y, Takahashi M, Hirai T, Ikushima I, Kitajima M, Sugahara T, et al. Representation of the visual field in the striate cortex: comparison of MR findings with visual field deficits in organic mercury poisoning (Minamata disease). Am J Neuro-Radiol. 1997;18:1127–1130.
  • Engel SA, Glover GH, Wandell BA. Retinotopic organisation in human visual cortex and the spatial precision of functional MRI. Cereb Cortex. 1997;7:181–192.
  • Condon BC, McFadzean RM, Barr DB, Dai D, Hadley DM. Further observations on the representation of the visual field in the occipital cortex using functional MRI. Neuroophthalmol.1998;20:1 1.
  • Miki A, Nakajima T, Fujita M, Takaji M, Abe A. Functional magnetic resonance imaging in homonymous hemianopsia. Am J Ophthalmol. 1996;121:258–266.
  • Kollias SS, Landau K, Khan N, Golay X, Bernays R, Yonekawa Y, et al. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. J Neurosurg. 1998;89:780–790.
  • Miki A, Nakajima T, Takagi M, Shirakashi M, Abe H. Detection of visual dysfunction in optic atrophy by functional magnetic resonance imaging during monocular visual stimulation. Am J Ophthalmol. 1996;122:404–415.
  • Miki A, Nakajima T, Hasebe H, Abe H. Functional magnetic resonance imaging of visual function in post-papilloedema optic atrophy. J Neuroophthalmol. 1997;17:223–225.
  • McFadzean RM, Condon BC. Letter. J Neuroophthalmol. 1998; 18:294–295.
  • Horton JC, Adams DL. The cortical representation of shadows cast by retinal blood vessels. Trans Am Ophthalmol Soc. 2000;98:33–39.
  • McFadzean RM, Hadley DM. Homonymous quadrantanopia respecting the horizontal meridian: a feature of striate and extrastriate cortical disease. Neurology. 1997;49: 1741–1746.
  • Gray LG, Galetta SL, Schatz NJ. Vertical and horizontal meridian sparing in occipital lobe homonymous hemianopias. Neurology. 1998;50: I 170–1173.
  • Galetta SL, Grossman RI. The representation of the horizontal meridian in the primary visual cortex. J Neuroophthalmol. 2000;20: 89–91.
  • Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, et al. Retinotopic organisation of human visual cortex: departures from the classical model. Cereb Cortex. 1996;6:354–361.
  • Landau K, Wichmann W, Valavanis A. The missing temporal crescent. Am J Ophthalmol. 1995;119:345–349.
  • Miki A, Liu GT, Raz J, Van Erp TGM, Liu C-SJ, Leuthardt EC, et al. Contralateral monocular dominance in anterior visual cortex confirmed by functional magnetic resonance imaging. Am J Ophthalmol. 2000;130:821–824.
  • Miki A, Liu GT, Fletcher DW, Hunter JV, Haselgrove JC. Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI. Pediatr Neurol. 2001;24: 232–234.
  • Sugishita M, Hemm I, Sakuma I, Beppu H, Shiokawa Y. The problem of macular sparing after unilateral occipital lesions. J Neurol. 1993;241: 1–9.
  • Bischoff P, Lang J, Huber A. Macular sparing as a perimetric artefact. Am J Ophthalmol. 1995; 119:72–80.
  • Lucas DR, Baseler HA, Heinen SI Eye movements during extended fixation of a stationary target. Invest Ophthalmol Vis Sci. 1996;37: S717.
  • Tanaka R, Miyasaka Y, Yada K, Mukuno K. Bilateral homonymous hemianopsia due to tentorial herniation, with sparing of central vision: case report. Neurosurgery. 1992;31:787–790.
  • Gray LG, Galetta SL, Siegal T, Schatz NJ. The central visual field in homonymous hemianopia: evidence for unilateral foveal representation. Arch Neurol. 1997; 54:312–317.
  • Magni R, Reni G, Rinaldi G, Ravelico G, Brancato R. Homonymous bilateral hemianopsia: electrophysiological study of a case. Eur J Ophthalmol. 1996;6:63–68.
  • Wettings P. The central visual field in homonymous hemianopia: foveal or macular representation? Arch Neurol. 1998;55:881.
  • McFadzean RM. The representation of the visual field in the occipital striate cortex. In: de Keizer RJW, Bollen ELEM. Neuro-ophthalmologie V 'an update'. Leiden: Boerhaave Commissie, 2000; 21–38.
  • McFadzean RM, Condon BC, Barr DB. Functional magnetic resonance imaging in the visual system (review). J Neuroophthalmol. 1999;19:186–200.
  • Gallen C, Hirschoff C, Buchanan S. Magneto-encephalography and magnetic source imaging: capabilities and limitations. Neuro-Imaging Clin N Am. 1995;5:227–249.
  • Dubowitz DJ, Martinez A, McDowell J. A simple set-up for tracking eye position during fMRI. Proc Int Soc Magn Reson Med. 1999;7:1691.
  • Rombouts SA, Barkhof F, Sprenger M, Valk J, Scheltens P. The functional basis of ocular dominance: function MRI (fMRI) findings. Neurosci Lett. 1996;221:
  • Menon RS, Ogawa S, Strupp JP, Ugurbil K. Ocular dominance in human VI demonstrated by functional magnetic resonance imaging. J Neurophysiol. 1997;77: 2780–2787.
  • Menon RS, Goodyear BG. Submillimeter functional localisation in human striate cortex using BOLD contrast at 4 Testa: implications for the vascular point-spread function. Magn Reson Med. 1999;41:230–235.
  • Talagala SL, Noll DC. Functional MRI using steady-state arterial water labeling. Magn Reson Med. 1998;39:179–183.
  • Schwarzbauer C, Heinke W. BASE imaging: a new spin labeling technique for measuring absolute perfusion changes. Magn Reson Med. 1998;39:717–722.
  • Lazar M, Weinstein D, Hasan K, Alexander AL. Axon tractography with Tensorlines. Proc Int Soc Magn Reson Med. 2000;8:482.
  • Mori S, CraM BJ, Chacko VP, Van Zijl PCM. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45: 265–269.
  • Bonmassar P, Liu AK, Schwartz TP, Ives J, Dale AM, Belliveau JVV. Simultaneous VEP and fMRI recordings: comparison between EEG localisation and fMRI activation. Proc Int Soc Magn Reson Med. 2000;8:858.
  • Poppet E, Stoerig P, Logothetis N, Fries W, Boergen K-P, Oertel W, et al. Plasticity and rigidity in the representation of the human visual field. Exp Brain Res. 1987;68:445–448.
  • Gilbert CD. Plasticity in visual perception and physiology. Curr Opin Neurobiol. 1996;6:269–274.
  • Safran AB, Landis T. Plasticity in the adult visual cortex: implications for the diagnosis of visual field defects and visual rehabilitation. C1117 Opin Ophthalmol. 1996;7:53–64.
  • Baseler HA, Morland AB, Wandell BA. Topographic organisation of human visual areas in the absence of input from primary cortex. J Neurosci. 1999;19:2619–2627.
  • Safran AB, Landis T. From cortical plasticity to unawareness of visual field defects. J Neuroophthalmol. 1999;19:84–88.
  • Victor JD, Apkarian P, Hirsch J, Conte MM, Packard M, Relkin NR, et al. Visual function and brain organisation in non-decussating retinal-fugal fibre syndrome. Cereb Cortex. 2000;10:2–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.