524
Views
281
CrossRef citations to date
0
Altmetric
Articles

Strategies for preventing heat stress in poultry

, , &
Pages 71-86 | Received 21 May 2005, Accepted 08 Jul 2005, Published online: 23 Sep 2019

References

  • AERTS, J-M., BERCKMANS, D., SAEVELS, P., DECUYPERE, E. and BUYSE, J. (2000) Modelling the static and dynamic responses of total heat production of broiler chickens to step changes in air temperature and light intensity. British Poultry Science 41: 651–659.
  • AIT-BOULAHSEN, A., GARLICH, J.D. and EDENS, F.W. (1995) Potassium chloride improves the thermotolerance of chickens exposed to acute heat stress. Poultry Science 74: 75–87.
  • ALLEMAN, F. and LECLERCQ, B. (1997) Effect of dietary protein and environmental temperature on growth performance and water consumption of male broiler chickens. British Poultry Science 38: 607–610.
  • ALMIRALL, M., COS, R., ESTEVE-GARCIA E. and BRUFAU, J. (1997) Effect of inclusion of sugar beet pulp, pelleting and season on laying hen performance. British Poultry Science 38: 530–536.
  • Al-MURRANI, W.K., KASSAB, A., AL-SAM, H.Z. and AL-ATHARI, A.M.K. (1997) Heterophil/lymphocyte ratio as a selection criterion for heat resistance in domestic fowls. British Poultry Science 38: 159–163.
  • ARJONA, A.A., DENBOW, D.M. and WEAVER, W.D. (1988) Effect of heat stress early in life on mortality of broilers exposed to high temperature just prior to marketing. Poultry Science 67: 226–231.
  • ARJONA, A.A., DENBOW, D.M. and WEAVER, W.D. (1990) Neonatal induced thermotolerance: physiological responses. Comparative Biochemistry Physiology A95: 393–399.
  • BALNAVE, D. and OLIVA, A.G. (1991) The influence of sodium bicarbonate and sulphur amino acids on the performance of broilers at moderate and high temperature. Australian Journal of Agricultural Research 42: 1385–1397.
  • BALNAVE, D. and MUHEEREZA, S.K. (1997) Improving eggshell quality at high temperatures with dietary sodium bicarbonate. Poultry Science 76: 588–593.
  • BALNAVE, D. and BRAKE, J. (1999) Responses of broilers to sodium bicarbonate supplementation of diets containing varying arginine: lysine ratios. Australian Journal of Agricultural Research 50: 425–430.
  • BASILIO, V. De, VILARINO, M., YAHAV, S. and PICARD, M. (2001) Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poultry Science 80: 29–36.
  • BASILIO, V. De, REQUENA, F., LEON, A., VILARINO, M. and PICARD, M. (2003) Early age thermal conditioning immediately reduces body temperature of broiler chicks in a tropical environment. Poultry Science 82: 1235–1241.
  • BEAUMONT, C., GUILLAUMIN, S., GERAERT, P.A., MIGNON-GRASTEAU, S. and LECLERCQ, B. (1998) Genetic parameters of body weight of broiler chickens measures at 22 C or 32 C. British Poultry Science 39: 488–491.
  • BELL, D.B. and MARION, J.E. (1990) Vitamin C in laying hen diets. Poultry Science 69: 1900–1904.
  • BOLLENGIER-LEE, S., MITCHELL, M.A., UTOMO, D.B., WILLIAMS, P.E.V. and WHITEHEAD, C.C. (1998) Influence of high dietary Vitamin E supplementation on egg production and plasma characteristics in hens subjected to heat stress. British Poultry Science 39: 106–112.
  • BOLLENGIER-LEE S., WILLAMS, P.E.V. and WHITEHEAD, C.C. (1999) Optimal dietary concentration of Vitamin E for alleviating the effect of heat stress on egg production in laying hens. British Poultry Science 40: 102–107.
  • BORGES, S.A., FISCHER DA SILVA, A.V., MAJORKA, A., HOOGE, D.M. and CUMMINGS, K.R. (2004) Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poultry Science 83: 1551–1558.
  • BOTTJE, G. and HARRISON, P.C. (1985) The effects of tap water, carbonated water, sodium bicarbonate, and calcium chloride on blood acid-base balance in cockerels subjected to heat stress. Poultry Science 64: 107–113.
  • BRANTON, S.L., REECE, F.N. and DEATON, J.W. (1986) Use of ammonium chloride and sodium bicarbonate in acute heat exposure of broilers. Poultry Science 65: 1689–1663.
  • BRAKE, J., BALNAVE, D. and DIBNER, J.J. (1998) Optimum dietary arginine: lysine ratio for broiler chickens in altered during heat stress in association with changes in intestinal uptake and dietary sodium chloride. British Poultry Science 39: 639–647.
  • BUYSE, J., DECUYPERE, E., BERGHMAN, L., KÜHN, E.R. and VANDESANDE, F. (1992) Effect of dietary protein content on episodic growth hormone secretion and on heat production of male broiler chickens. British Poultry Science 33: 1101–1109.
  • BUYSE, J., DECUYPERE, E. and MICHELS, H. (1994) Intermittent lighting and broiler production 2. Effect on energy and on nitrogen metabolism. Archiv für Geflügelkunde 58: 78–83.
  • CAHANER, A. and LEENSTRA, F. (1992) Effects of high temperature on growth and efficiency of male and female broilers from lines selected for high weight gain, favourable feed conversion, and high or low fat content. Poultry Science 71: 1237–1250.
  • CAHANER, A., DEEB, N. and GUTMAN, M. (1993) Effects of the plumage-reducing naked neck (Na) gene on the performance of fast-growing broilers at normal and high ambient temperatures. Poultry Science 72: 767–775.
  • CAHANER, A., PINCHASOV, Y. and NIR, I. (1995) Effects of dietary protein under high temperature on body weight, breast meat yield, and abdominal fat deposition of broiler stocks differing in growth rate and fatness. Poultry Science 74: 968–975.
  • CARLILE, F.S. (1984) Ammonia in poultry houses: A literature review. World's Poultry Science Journal 40: 99–113.
  • CHARLES, D.R. (2002) Responses to the thermal environment. In: Poultry Environment Problems, A guide to solutions (CHARLES, D.A. and WALKER, A.W. Eds.), Nottingham University Press, Nottingham, United Kingdom, pp.1–16.
  • CHEN, J., LI, X., BALNAVE, D. and BRAKE, J. (2005) The influence of dietary sodium chloride, arginine:lysine ratio, and methionine source on apparent ileal digestibility of arginine and lysine in acutely heat-stressed broilers. Poultry Science 84: 294–297.
  • CORZO, A., MORAN, E.T. and HOEHLER, D. (2003) Lysine needs of summer-reared male broilers from six to eight weeks of age. Poultry Science 82: 1602–1607.
  • CREEL, L.H., MAURICE, D.V., LIGHTSEY, S.F. and GRIMES, L.W. (2001) Stability of dietary ascorbic acid and the effect of supplementation on reproductive performance of broiler breeder chickens. British Poultry Science 42: 96–101.
  • DECUYPERE, E., HUYBRECHTS, L.M., KÜHN, E.R., TIXIER-BOICHARD, M. and MÉRAT, P. (1991) Physiological alterations associated with the chicken sex-linked dwarfing gene. Critical Review of Poultry biology 3: 191–221.
  • DECUYPERE, E., BUYSE, J., MÉRAT, P., ZOONS, J. and VLOEBERGHS, I. (1993) Growth, abdominal fat content, heat Production and plasma hormone levels of naked-neck and control broiler chickens. Animal production 57: 483–490.
  • DEEB, N. and CAHANER, A. (1999) The effects of naked neck genotypes, ambient temperature, and feeding status and their interactions on body temperature and performance of broilers. Poultry Science 78: 1341–1346.
  • DEEB, N. and CAHANER, A. (2001a) Genotype-by-temperature interaction with broiler genotypes differing in growth rate. 1. The effects of high ambient temperature and naked-neck genotype on lines differing in genetic background. Poultry Science 80: 695–702.
  • DEEB, N. and CAHANER, A. (2001b) Genotype-by-temperature interaction with broiler genotypes differing in growth rate. 2. The effects of high ambient temperature on dwarf versus normal broilers. Poultry Science 80: 541–548.
  • DEEB, N. and CAHANER, A. (2002) Genotype-by-temperature interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperature. Poultry Science 81: 293–301.
  • EBERHART, D.E. and WASHBURN, K.W. (1993) Assessing the effects of the naked neck gene on chronic heat stress resistance in two genetic population. Poultry Science 72: 1391–1399.
  • EL-GENDY, E. and WASHBURG, K.W. (1995) Genetic variation in body temperature and its response to short-term acute heat stress in broilers. Poultry Science 74: 225–230.
  • FERKET, P.R. and QURESHI, M.A. (1992) Performance and immunity of heat-stressed broilers fed Vitaminand electrolyte-supplemented drinking water. Poultry Science 71: 88–97.
  • FRANCIS, C.A., MACLEOD, M.G. and ANDERSON, J.E.M. (1991) Alleviation of acute heat stress by feed withdrawal or darkness. British Poultry Science 32: 219–225.
  • GONET, N.A., SANDERCOCK, D.A. and MITCHELL, M.A. (2000) A comparison of thermoregulatory capacity in three lines of female broiler breeders. British Poultry Science 41: 700–701.
  • GORMAN, I. and BALNAVE, D. (1994) Effects of dietary mineral supplementation on the performance and mineral retentions of broilers at high ambient temperatures. British Poultry Science 35: 563–572.
  • HALEVY, O., KRISPIN, A., LESHEM, Y., MCMURTRY, J. P. and YAHAV, S. (2001) Early-age heat exposure affects skeletal muscle satellite cell proliferation and differentiation in chicks. American Journal of Physiology, Regulatory Integrative Comparative Physiology 281: R302–R309.
  • HANZL, C.J. and SOMES, JR. R.G. (1983) The effect of the naked neck gene, Na, on growth and carcass composition of broilers raised in two temperatures. Poultry Science 62: 934–941.
  • HAYAT, J., BALNAVE, D. and BRAKE J. (1999) Sodium bicarbonate and potassium bicarbonate supplements for broilers can cause poor performance at high temperatures. British Poultry Science 40: 411–418.
  • HOCKING, P.M., MAXWELL, M.H. and MITCHELL, M.A. (1994) Haematology and blood composition at two ambient temperatures in genetically fat and lean adult broiler breeder females fed ad libitum or restricted throughout life. British Poultry Science 35: 799–807.
  • HOWLIDER, M.A.R. and ROSE, S.P. (1987) Temperature and the growth of broilers. World's Poultry Science Journal 43: 228–237.
  • KHAJAVI, M., RAHIMI, S., HASSAN, Z.M., KAMALI, M.A. and MOUSAVI, T. (2003) Effect of feed restriction early in life on humoral and cellular immunity of two commercial broiler strains under heat stress conditions. British Poultry Science 44: 490–497.
  • KIRUNDA, D.F.K., SCHEIDELER, S.E. and MCKEE, S.R. (2001) The efficacy of Vitamin E (DL-α-tocopheryl acetate) supplementation in hens diets to alleviate egg quality deterioration associated with high temperature exposure. Poultry Science 80: 1378–1383.
  • KRISTENSEN, H.H. and WATHES, C.M. (2000) Ammonia and poultry welfare: a review. World's Poultry Science Journal 56: 235–245.
  • KUTLU, H.R. and FORBES, J.M. (1993) Self-selection of ascorbic acid in coloured feeds by heat-stressed broiler chicks. Physiology and Behavior 53: 103–110.
  • KUTLU, H.R. (2001) Influences of wet feeding and supplementation with ascorbic acid on performance and carcass composition of broiler chicks exposed to a high ambient temperature. Archiv für Tierernahrung 54:127–139.
  • KUCUK, O., SAHIN, N. and SAHIN, K. (2003) Supplemental zinc and Vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological Trace Element Research 94: 225–235.
  • LAN, P.T., SAKAMOTO, M. and BENNO, Y. (2004) Effects of two probiotic lactobacillus strains on jejunal and caecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiology and Immunology 48: 917–929.
  • LIEW, P.K., ZULKIFLI, I., HAIR-BEJO, M., OMAR, A.R. and ISRAF, D.A. (2003) Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress. Poultry Science 82: 1879–1885.
  • LIN, H., DU, R. and ZHANG, Z.Y. (2000) The peroxidation in tissues of heat-stressed broilers. Asian- Australian Journal of Animal Science 13: 1373–1376.
  • LIN, H., WANG, L.F., SONG, J.L., XIE, Y.M. and YANG, Q.M. (2002) Effect of dietary supplemental levels of Vitamin A on egg production and immune responses of heat-stressed laying hens. Poultry Science 81: 458–465.
  • LIN, H., BUYSE J., SHENG, Q.K., XIE, Y.M. and SONG, J.L. (2003) Effects of ascorbic acid supplementation on the immune function and laying performance of heat-stressed laying hens. Journal of Feed, Agriculture and Environment 1: 103–107.
  • LIN, H., ZHANG, H.F., JIAO, H.C., ZHAO, T., SUI, S.J., GU, X.H., ZHANG, Z.Y., BUYSE, J. and DECUYPERE, E. (2005a) The thermoregulation response of broiler chickens to humidity at different ambient temperatures I. One-week-age. Poultry Science 84: 1166–1172.
  • LIN, H., ZHANG, H.F., DU, R., GU, X.H., ZHANG, Z.Y. BUYSE, J. and DECUYPERE, E. (2005b). The thermoregulation response of broiler chickens to humidity at different ambient temperatures I. Four-week-age. Poultry Science 84: 1173–1178.
  • LIN, H., JIAO, H.C., DECUYPERE, E. and BUYSE, J. (2005c). Physiological responses to heat stress in poultry. Journal of Thermal Biology (submitted).
  • MACLEOD, M.G. and HOCKING, P.M. (1993) Thermoregulation at high ambient temperature in genetically fat and lean broiler hens fed ad libitum or on a controlled-feeding regime. British Poultry Science 34: 589–596.
  • MAHMOUD, K.Z., EDENS, F.W., EISEN, E.J. and HAVENSTEIN, G.B. (2004) Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat stress. Comparative Biochemical Physiology, B 137:35–42.
  • MARSDEN, A. and MORRIS, T.R. (1987) Quantitative review of the effects of environmental temperature on feed intake, egg output and energy balance in laying pullet. British Poultry Science 28: 693–704.
  • MATHUR, P.K. and HORST, P. (1994) Genotype by environment interactions in laying hens based o relationship between breeding values of sires in temperate and tropical environment. Poultry Science 73: 1777–1784.
  • MCKEE, J.S. and HURRISON, P.C. (1995) Effects of supplemental ascorbic acid on the performance of broiler chickens exposed to multiple concurrent stressors. Poultry Science 74: 1772–1785.
  • MCKEE, J.S., HURRISON, P.C. and RISKOWSKI, G.L. (1997) Effects of supplemental ascorbic acid on the energy conversion of broiler chicks during heat stress and feed withdrawal. Poultry Science 76: 1278–1286.
  • MENDES, A.A., WATKINS, S.E., ENGLAND, J.A., SALEH, E.A., WALDROUP, A.L. and WALDROUP, P.W. (1997) Influence of dietary lysine levels and arginine:lysine ratios on performance of broilers exposed to heat or cold stress during the period of three to six weeks of age. Poultry Science 76: 472–481.
  • MÉRAT, P. (1986) Potential usefulness of the Na (naked neck) gene in poultry production. World's Poultry Science Journal 42: 124–142.
  • MILES, D.M., BRANTON, S.L. and LOTT, B.D. (2004) Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poultry Science 83: 1650–1654.
  • NIEKERK, T. VAN, GARBER, T.K., DUNNINGTON, E.A., GROSS, W.B. and SIEGEL, P.B. (1989) Response of white leghorn chicks fed ascorbic acid and challenged with Escherichia coli or with cortiocosterone. Poultry Science 68: 1631–1636.
  • OKAN, F., KUTLU, H.R., CANOGULLARI, S. and BAYKAL, L. (1996a). Influence of dietary supplemental ascorbic acid on laying performance of Japanese quail reared under high environmental temperature. British Poultry Science 37: S71–S73.
  • OKAN, F., KUTLU, H.R., BAYKAL, L. and CANOGULLARI, S. (1996b) Effect of wet feeding on laying performance of Japanese quail maintained under high environmental temperature. British Poultry Science 37(suppl.): S70–71.
  • ORBAN, J.I., ROLAND, SR D.A., CUMMINS, K. and LOVEL, R.T. (1993) Influence of large dose of ascorbic acid on performance on performance, plasma calcium, bone characteristic, and eggshell quality in broilers and leghorn hens. Poultry Science 72: 691–700.
  • PARDUE, S.L. and THAXTON, J.P. (1982) Enhanced livability and improved immunological responsiveness in ascorbic acid supplemented cockerels during acute heat stress. Poultry Science 61: 1522 (Abstr.).
  • PARDUE, S.L., THAXTON, J.P. and BRAKE, J. (1984) Plasma ascorbic acid concentration following ascorbic acid loading in chicks. Poultry Science 63: 2492–2496.
  • PATRA, B.N., BAIS, R.K.S., PRASAD, R.B. and SINGH, B.P. (2002) Performance of naked neck versus normally feathered coloured broilers for growth, carcass traits and blood biochemical parameters in tropical climate. Asian-Australian Journal of Animal Science 12: 1776–1783.
  • PEEBLES, E.D. and BRAKE, J. (1985) Relationship of dietary ascorbic acid to broiler breeder performance. Poultry Science 64: 2041–2048.
  • PRATT, E.V., ROSE, S.P. and KEELING, A.A. (2004) Effect of moisture content and ambient temperature on the gaseous nitrogen loss from stores laying hen manure. British Poultry Science 45: 301–305.
  • PUTHPONGSIRIPORN, U., SCHEIDELER, S.E., SELL, J.L. and BECK, M.M. (2001) Effects of Vitamin E and C supplementation on performance, in vitro lymphocyte proliferation, and antioxidant status of laying hens during heat stress. Poultry Science 80: 1190–1200.
  • PUVADOLPIROD, S. and THAXTON, J.P. (2000) Model of physiological stress in chickens 1. response parameters. Poultry Science 79: 363–369.
  • RAJU, M.V., SUNDER, G.S., CHAWAK, M.M., RAO, S.V. and SADAGOPAN, V.R. (2004) Response of naked neck (Nana) and normal (nana) broiler chickens to dietary energy levels in a subtropical climate. British Poultry Science 45: 186–193.
  • ROSE, S.P. and UDDIN, M.S. (1997) Effect of temperature on the responses of broiler chickens to dietary lysine balance. British Poultry Science 38: S36–S37.
  • SAHIN, K., SAHIN, N., ONDERCI, M., GURSU, F. and CIKIM, G. (2002) Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biological Trace Element Research 89: 53–64.
  • SAHIN, K., ONDERCI, M., SAHIN, N., GURSU, M.F. and KUCUK, O. (2003) Dietary Vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. Journal of Nutrition 133: 1882–1886.
  • SAMARA, M.H., ROBBINS, K.R. and SMITH, M.O. (1996) Interaction of feeding time and temperature and their relationship to performance of the broiler breeder hen. Poultry Science 75: 34–41.
  • SETTAR, P., YALÇIN, S., TÜRKMUT, L., ÖZKAN, S. and CAHANAR, C. (1999) Season by genotype interaction related to broiler growth rate and heat tolerance. Poultry Science 78: 1353–1358.
  • SHANE, S. M. (1988) Factors influence health and performance of poultry in hot climates. Poultry Biology 1: 247–269.
  • SIEGEL, H.S. (1995) Stress, strains and resistance. British Poultry Science 36: 3–22.
  • SMITH, M.O. (1994) Effects of electrolyte and lighting regimen on growth of heat-distressed broilers. Poultry Science 73: 350–353.
  • SMITH, M.O. and TEETER, R.G. (1987) Potassium balance of the 5 to 8-week old broiler exposed to constant or cyclic high temperature stress and the effects of supplemental potassium chloride on body weight gain and feed efficiency. Poultry Science 66: 487–492.
  • SYKE, A.H. and SALIH, F.I.M. (1986) Effect of changes in dietary energy intake and environmental temperature on heat tolerance on the fowl. British Poultry Science 27: 687–693.
  • TADTIYANANT, C., LYONS, J.J. and VANDEPOPULIERE, J.M. (1991) Influence of wet and dry feed on laying hens under heat stress. Poultry Science 70: 44–52.
  • TAOUIS, M., DE BASILIO, V., MIGNON-GRASTEAU, S., CROCHET, S., BOUCHOT, C., BIGOT, K., COLLIN, A. and PICARD, M. (2002) Early-age thermal conditioning reduces uncoupling protein messenger RNA expression in pectoral muscle of broiler chicks at seven days of age. Poultry Science 81: 1640–1643.
  • TEETER, R.G., SMITH, M.O., OWENS, F.N. and ARP, S.C. (1985) Chronic heat stress and respiratory alkalosis: Occurrence and treatment in broiler chicks. Poultry Science 64: 1060–1064.
  • TEETER, R.G. and SMITH, M.O. (1986) High chronic ambient temperature stress effects on broiler acid-base balance and their response to supplemental ammonium chloride, potassium chloride, and potassium carbonate. Poultry Science 65: 1777–1781.
  • TEMIM, S., CHAGNEAU, A.M., PERESSON, R. and TESSERAUD, S. (2000) Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. Journal of Nutrition 130: 813–819.
  • UNI, Z., GAL-GARBER, O., GEYRA, A., SKLAN, D. and YAHAV, S. (2001) Changes in growth and function of chick small intestine epithelium due to early thermal conditioning. Poultry Science 80: 438–445.
  • VELDKAMP, T., FERKET, P.R., KWAKKEL, R.P., NIXEY, C. and NOORDHUIZEN, J.P.T.M. (2000a) Interaction between ambient temperature and supplementation of synthetic amino acid on performance and carcass parameters in commercial male turkeys. Poultry Science 79: 1472–1477.
  • VELDKAMP, T., KWAKKEL, R.P., FERKET, P.R., SIMONS, P.C.M., NOORDHUIZEN, J.P.T.M. and PIJPERS, A. (2000b) Effects of ambient temperature, arginine-to-lysine ratio, and electrolyte balance on performance, carcass, and blood parameters in commercial male turkeys. Poultry Science 79: 1608–1616.
  • WANG, L.F., LIN, H. and YANG, Q.M. (2002) The effect of dietary Vitamin A levels on peroxidation status of inoculated and heat-stressed laying hens. Acta Veterinaria et Zootechnica Sinica 33: 443–447.
  • WASHBURN, K.W., PEAVEY, R. and RENWICK, G.M. (1980) Relationship of strain variation and feed restriction to variation in blood pressure and response to heat stress. Poultry Science 59: 2586–2588.
  • WATHES, C.W. (1998) Aerial emissions from poultry production. World's Poultry Science Journal 54: 241–251.
  • WEYTJENS, S., MEIJERHOF, R., BUYSE, J. and DECUYPERE, E. (1999) Thermoregulation in chicks originating from breeder flocks of two different ages. Journal of Applied Poultry Research 8: 139–145.
  • WHITING, T.S., ANDREWS, L.D. and STAMPS, L. (1991) Effects of sodium bicarbonate and potassium chloride drinking water supplementation. 2. Meat and carcass characteristics of broilers grown under thermoneutral or cyclic heat-stress conditions. Poultry Science 70: 60–66.
  • WIERNUSZ, C.J. and TEETER, R.G. (1993) Feeding effects of broiler thermobalance during themoneutral and high ambient temperature exposure. Poultry Science 72: 1917–1924.
  • WIERNUSZ, C.J. and TEETER, R.G. (1996) Acclimation effects on fed and fasted broiler thermobalance during themoneutral and high ambient temperature exposure. British Poultry Science 37: 677–687.
  • YAHAV, S. (2000a) Domestic fowl – strategies of confront environmental conditions. Avian and Poultry Biology reviews 11: 81–95.
  • YAHAV, S. (2000b) Relative humidity at moderate ambient temperature: its effect on male broiler chickens and turkey. British Poultry Science 41: 94–100.
  • YAHAV, S. and HURWITZ, S. (1996) Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poultry Science 75: 402–406.
  • YAHAV, S. (2004) Ammonia affects performance and thermoregulation of male broiler chickens. Animal Research 53: 289–293.
  • YAHAV, S., GOLDFELD, S., PLAVNIK, I. and HURWITZ, S. (1995) Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. Journal of Thermal Biology 20: 245–253.
  • YAHAV, S., SHAMAI, A., HOREV, G., BAR-ILAN, D., GENINA, O. and FRIEDMAN-EINAT, M. (1997) Effect of acquisition of improved thermotolerance on the induction of hat shock proteins in broiler chickens. Poultry Science 76: 1428–1434.
  • YAHAV, S. and PLAVNIK, I. (1999) Induction of early age thermal conditioning and feed restriction on performance and thermotolerance of male broiler chicken. British Poultry Science 40: 120–126.
  • YAHAV, S., LUGER, D., CAHANER, A., DOTAN, M., RUSAL, M. and HURWITZ, S. (1998) Thermoregulation in naked neck chickens subjected to different ambient temperatures. British Poultry Science 39: 133–138.
  • YAHAV, S. and MCMURTRY, J.P. (2001) Thermotolerance acquisition in broiler chickens by temperature conditioning early in life – The effect of timing and ambient temperature. Poultry Science 80: 1662–1666.
  • YALÇIN, S., ÖZKAN, S., TÜRKMUT, L. and SIEGEL, P.B. (2001) Responses to heat stress in commercial and local broiler stocks. 1. Performance traits. British Poultry Science 42: 149–152.
  • YALÇIN, S., SETTAR, P., ÖZKAN, S. and CAHANER, A. (1997a) Comparative evaluation of three commercial broiler stocks in hot versus temperate climates. Poultry Science 76: 921–929.
  • YALÇIN, S., TESTIK, A., ÖZKAN, S., SETTAR, P., ÇELEN, F. and CAHANER, A. (1997b) Performance of naked neck and normal broilers in hot, warm, and temperate climates. Poultry Science 76: 930–937.
  • YO, T., SIEGEL, P.B., GUERIN, H. and PICARD, M. (1997) Self-selection of dietary protein and energy by broilers grown under a tropical climate: effect of feed particle size on the feed choice. Poultry Science 76: 1467–73.
  • YUNIS, R. and CAHANER, A. (1999) The effects of the naked neck (Na) and frizzle (F) genes on growth and meat yield of broilers and their interactions with ambient temperatures and potential growth rate. Poultry Science 78: 1347–1352.
  • ZAPATA, L.F. and GERNAT, A.G. (1995) The effect of four levels of ascorbic acid and two levels of calcium on eggshell quality of force-moulted white leghorn hens. Poultry Science 74: 1049–1052.
  • ZHOU, W.T. and YAMAMOTO, S. (1997) Effects of environmental temperature and heat production due to feed intake on abdominal temperature, shank skin temperature and respiration rate of broilers. British Poultry Science 38: 107–114.
  • ZHOU, W.T., FUJITA, M., ITO, T. and YAMAMOTO, S. (1997) Effects of early heat exposure on thermoregulatory responses and blood viscosity of broilers prior to marketing. British Poultry Science 38: 301–306.
  • ZULKIFLI, I., DUNNINGTON, E.A., GROSS, W.B. and SIEGEL, P.B. (1994a) Inhibition of adrenal steroidogenesis, feed restriction and acclimation of high ambient temperatures in chickens. British Poultry Science 35: 417–426.
  • ZULKIFLI, I., DUNNINGTON, E.A., GROSS, W.B. and SIEGEL, P.B. (1994b) Feed restriction early or later in life and its effect on adaptability, disease resistance, and immunocompetence of heat-stressed dwarf and non-dwarf chickens. British Poultry Science 35: 203–213.
  • ZULKIFLI, I., CHE NORMA, M.T., ISRAF, D.A. and OMAR, A.R. (2000) The effect of early age feed restriction on subsequent response to high environmental temperatures in female broiler chickens. Poultry science 79: 1401–1407.
  • ZULKIFLI, I., CHE NORMA, M.T., ISRAF, D.A. and OMAR, A.R. (2002) The effect of early-age feed restriction on heat shock protein 70 response in heat-stressed female broiler chickens. British Poultry Science 43: 141–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.