335
Views
157
CrossRef citations to date
0
Altmetric
Articles

Necrotic enteritis; a continuing challenge for the poultry industry

, , &
Pages 221-247 | Received 20 Aug 2005, Accepted 23 Sep 2005, Published online: 23 Sep 2019

References

  • ACAMOVIC, T. (2001) Commercial application of enzyme technology for poultry production. World's Poultry Science Journal 57: 225–242.
  • ACAMOVIC, T., STEWART, C.S. and PENNYCOTT, T.W. (2004) (Eds) Poisonous plants and related toxins. CAB International, Wallingford. UK. Pp. 586.
  • ALLEN, P.C., DANFORTH, H.D. and LEVANDER, O.A. (1996) Diets high in n-3 fatty acids reduce cecal lesion scores in chickens infected with Eimeria tenella. Poultry Science 75: 179–185.
  • ALLEN, P.C. LYDON, J. and DANFORTH, H.D. (1997) Effects of components of Artemisia annua on coccidia infections in chickens. Poultry Science 76: 1156–1163.
  • AL-SHIEKHY F. and AL-SAIEG, A. (1980) Role of coccidia in the occurrence of necrotic enteritis of chickens. Avian Diseases 24: 324–333.
  • AL-SHIEKHY F. and TRUSCOTT R.B. (1977) The pathology of necrotic enteritis of chickens following infusion of crude toxins of Clostridium perfringens into the duodenum. Avian Diseases 21: 241–255.
  • ANNETT, C.B., VISTE, J.R., CHIRINO-TREJO, M., CLASSEN, H.L., MIDDLETON, D.M. and SIMKO, E. (2002) Necrotic enteritis: effects of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathology 31: 599–602.
  • APAJALAHTI, J., KETTUNEN, A. and GRAHAM, H. (2004) Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal 60: 223–232.
  • APAJALAHTI, J., SARKILAHTI, L.K., MAKI, R.R., HEIKKINEN, J.P., NURMINEN, P.H. and HOLBEN R. (1998) Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analyses of community structure in the gastrointestinal tract of broiler chickens. Applied Environmental Microbiology 64: 4084–4088.
  • ASAOKA, Y., YANNAI, T., HIRAYAMA, H., UNE, Y., SAITO, E., SAKAI, H., GORYO, M., FUKUSHI, H. and MASEGI, T. (2004) Fatal necrotic enteritis associated with Clostridium perfringens in wild crows (Corvus macrorhynchos). Avian Pathology 33: 19–24.
  • BABA, E., FULLER, A.L., GILBERT, J.M., THAYER, S.G. and MCDOUGALD, L.R. (1992) Effects of Eimeria-brunetti infection and dietary zinc on experimental induction of necrotic enteritis in broiler chickens. Avian Diseases 36: 59–62.
  • BACH KNUDSEN, K.E. (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology 67: 319–338.
  • BACH KNUDSEN, K.E. and JORGENSEN, H. (2000) Intestinal degradation of dietary carbohydrates – from birth to maturity. Digestive physiology in pigs. In: Proceedings of the 8th Symposium, Swedish University of Agricultural Sciences, Uppsala, Sweden, Pp.109–120.
  • BAINS, B.S. (2002) Anticoccidial prophylaxis and disease interactions. World Poultry 18(9): 57–59.
  • BARBOSA, T.M., SERRA, C.R., LA RAGIONE, R.M., WOODWARD, M.J. and HENRIQUES, A.O. (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology 71: 968–978.
  • BARNES, E.M., MEAD, G.C., BARNUM, D.A. and HARRY E.G. (1972) The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. British Poultry Science 13: 311–326.
  • Bedford, M. (2000) Removal of antibiotic growth promotors from poultry diets: implications and strategies to minimise subsequent problems. World's Poultry Science Journal 56: 347–365.
  • BEDFORD, M.R. and APAJALAHTI, J. (2000) Microbial interactions in the response to exogenous enzyme utilization. In: Enzymes in farm animal nutrition. BEDFORD, M.R (ed) Pp. 299–314.
  • BENTO, M.H.L., ACAMOVIC, T. and MAKKAR, H.P.S. (2005a) The influence of tannin, pectin and polyethylene glycol on attachment of 15N-labelled rumen microorganisms to cellulose. Animal Feed Science and Technology In press.
  • BENTO, M.H.L., ACAMOVIC, T. and MAKKAR, H.P.S. (2005b) Effect of mimosa tannin and pectin on microbial protein synthesis and gas production during in vitro fermentation of 15N-labelled maize shoots. Animal Feed Science and Technology In press.
  • BERKHOFF, H.A. (1985) Clostridium colinum sp. nov, the causative agent of ulcerative enteritis (quail disease) in quail, chickens, and pheasants. International Journal of Systematic Bacteriology 35: 155–159.
  • BILDFELL, R.J., ELTZROTH, E.K. and SONGER, J.G. (2001) Enteritis as a cause of mortality in the Western Bluebird (Sialia mexicana). Avian Diseases 45: 760–763.
  • BOULLIANE, M. (1999) Can we farm poultry without antimicrobials? Publication of the Ontario, Ministry of Agriculture, Food and Rural Affairs. Queen's Printer for Ontario, Ontario, Canada. http://www.gov.on.ca/OMAFRA/english/livestock/animalcare/amr/facts/boulianne.htm
  • BRANTON, S.L., LOTT, B.D., MAY, J.D., HEDIN, P.A., AUSTIN, F.W., LATOUR, M.A. and DAY, E.J. (1997) The effects of nonautoclaved and autoclaved water-soluble wheat extracts on the growth of Clostridium perfringens. Poultry Science 75: 335–338.
  • BROUSSARD, C.T., HOFACRE, C.L., PAGE, R.K. and FLETCHER, O.J. (1986) Necrotic enteritis in cage-reared commercial layer pullets. Avian Disease 30: 617–619.
  • BUESCHEL, D.M., JOST, B.H., BILLINGTON, S.J., TRINH, H.T. and SONGER, J.G. (2003) Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Veterinary Microbiology 94: 121–129.
  • CALDERON, A.M., BUCK, G. and DOYLE, R.J. (1997) Lectin-microorganism complexes. In: Lectins, Biology, Biochemistry, Clinical Biochemistry, Volume 12, van DRIESSCHE, E., BEECKMANS, S. and BØg-hansen, T.C. (Eds) Textop, Hellerup, Denmark.
  • CARRE, B. (2004) Causes for variation in digestibility of starch among feedstuffs. World's Poultry Science Journal 60: 76–89.
  • CASEWELL, M., FRIIS, C., GRANELL, E.M., MCMULLIN, P. and PHILLIPS, I. (2003) The European ban on growth-promoting antibiotics and its consequences for human and animal health. Journal of Antimicrobial Chemotherapy 52: 159–161.
  • CLARKE, E. and WISEMAN, J. (2005) Effects of variable trypsin inhibitor content of soyabean meal on true and apparent ileal digestibility of amino acids and pancreas size in broiler chickens. Animal Feed Science and technology 121: 125–138.
  • CLARKE, E. and WISEMAN, J. (2004) Effect of varying trypsin inhibitor activity of full fat soya on nutritional value for broiler chicks. In: Poisonous plants and related toxins. Acamovic, T., STEWART, C.S. and PENNYCOTT, T.W. (Eds) CAB International, Wallingford. UK Pp. 512–519.
  • CHESSON, A. (2001) Non-starch degrading enzymes in poultry diets: influence of ingredients on the selection of activities. World's Poultry Science Journal 57: 251–263.
  • CHOCT, M. (2001) Enzyme supplementation of poultry diets based on viscous cereals. In: Enzymes in Farm Animal Nutrition (Bedford, M.R. and Partridge, GG Eds), CABI, Wallingford UK. Pp 145–160.
  • CHOCT, M., HUGHES, R.J., WANG, J., BEDFORD, M.R., MORGAN, A.J. and ANNISON, G. (1996) Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. British Poultry Science 37: 609–621.
  • COWEN, B.S., SCHWARTZ, L.D., WILSON, R.A. and AMBRUS, S.I. (1987) Experimentally induced necrotic enteritis in chickens. Avian Diseases 31: 904–906.
  • CRAVEN, S.E., COX, N.A., STERN, N.J. and MAULDIN, J.M. (2001a) Prevalence of Clostridium perfringens in commercial broiler hatcheries. Avian Diseases 45: 1050–1053.
  • CRAVEN, S.E., STERN, N.J., BAILEY, J.S. and COX, N.A. (2001b) Incidence of Clostridium perfringens in broiler chickens and their environment during production and processing. Avian Diseases 45: 887–896.
  • CRAVEN, S.E., STERN, N.J., COX, N.A., BAILEY, J.S. and BERRANG, M. (1999) Cecal carriage of Clostridium perfringens in broiler chickens given Mucosal Starter Culture (TM). Avian Diseases 43: 484–490.
  • COWIESON, A.J. (2005) Factors that affect the nutritional value of maize for broilers. Animal Feed Science and Technology 119: 293–305.
  • DIBNER, J.J. and BUTTIN, P. (2002) Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research 11: 453–463.
  • D'MELLO, J.P.F. (1997) Handbook of Plant and Fungal Toxicants. CRC Press, Boca Raton, New York.
  • DANICKE, S. (2002) Prevention and control of mycotoxins in the poultry production chain: a European perspective. World's Poultry Science Journal 58: 451–467.
  • DANICKE, S., MATTHES, S., HALLE, I., UEBERSCHAR, K.H., DOLL, S. and VALENTA, H. (2003) Effects of graded levels of Fusarium toxin-contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. British Poultry Science 44: 113–126.
  • DONELLI, G., FIORENTINI, C., MATARRESE, P., FALZANO, L., CARDINES, R., MASTRANTONIO, P., PAYNE, D. W. and TITBALL, R.W. (2003) Evidence for cytoskeletal changes secondary to plasma membrane functional alterations in the in vitro cell response to Clostridium perfringens epsilon-toxin. Comparative Immunology, Microbiology and Infectious Diseases 26: 145–156.
  • DROUAL, R., FARVER, T.B. and BICKFORD, A.A. (1995) Relationship of sex, age, and concurrent intestinal disease to necrotic enteritis in turkeys. Avian Diseases 39: 599–605.
  • DROUAL, R., SHIVAPRASAD, H.L. and CHIN, R.P. (1994) Coccidiosis and necrotic enteritis in turkeys. Avian Diseases 38: 177–183.
  • ELWINGER, K., BERNDSTON, E., ENGSTROM, B., FOSSUM, O. and WALDENSTEDT, L. (1998) Effect of antibiotic growth promotors and anticoccidials on growth of Clostridium perfringens in the caeca and on the performance of broiler chickens. Acta Veterinaria Scandinavica 39: 433–441.
  • ELWINGER, K., ENGSTROM, B., BERNDSTON, E., FOSSUM, O. and TEGLOF, B. (1992) The effects of narasin on Clostridium perfringens in caeca and the occurrence of necrotic enteritis in broiler chickens. In: Proceedings of XIX World's Poultry Congress Amsterdam, The Netherlands. Pp. 580–584.
  • ELWINGER, K. and TEGLOF, B. (1991) Performance of broiler chickens as influenced by a dietary enzyme complex with and without antibiotic supplementation. Archives für Geflügelkunde 55: 69–73.
  • EMBORG, H., ERSBOLL, A., HEUER, O. and WEGENER H.C. (2001) The effect of discontinuing the use of antimicrobial growth promotors on the productivity in the Danish broiler production. Preventative Veterinary Medicine 50: 53–70.
  • EVANS, M.C. and WEGENER, H.C. (2003) Antimicrobial growth promotors and Salmonella spp., Campylobacter spp. in poultry and swine, Denmark. Emerging Infectious Diseases 9: 489–492.
  • FINK-GREMMELS, J. (2005) Mycotoxicosis in Animal Health. In: European Mycotoxin Seminar Series, Publication of Alltech Incorporated, Nicholasville, USA. Pp.19–41.
  • FRAME, D.D. and BICKFORD, A.A. (1986) An outbreak of coccidiosis and necrotic enteritis in 16-week-old cage-reared layer replacement pullets. Avian Diseases 30: 601–602.
  • GARRIDO, M.N., SKJERVHEIM, M., OPPEGAARD, H. and SORUM, H. (2004) Acidified litter benefits the intestinal flora balance of broiler chickens. Applied And Environmental Microbiology 70: 5208–5213.
  • GAZDZINSKI, P. and JULIAN, R.J. (1992) Necrotic enteritis in turkeys. Avian Diseases 36: 792–798.
  • GIANNENAS, I., FLOROU-PANERI, P., PAPAZAHARIADOU, M., CHRISTAKI, E., BOTSOGLOU, N.A. and SPAIS, A.B. (2003) Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Archives of Animal Nutrition 57: 99–106.
  • GILBERT, C. and SLAVIK, M. (2004) Determination of toxicity of Campylobacter jejuni isolated from humans and from poultry carcasses acquired at various stages of production. Journal of Applied Microbiology 97: 347–353.
  • GORNOWICZ, E. (2004) Microbiological evaluation of poultry house environments as influenced by acidifying preparations added to compound feed. Medycyna Weterynaryjna 60: 755–758.
  • GRAVE, K., KALDHUSDAL, M., KRUSE, H., FEVANG, R., HARR, L.M. and FLATLANDSMO, K. (2004) What has happened in Norway after the ban of Avoparcin? Consumption of antimicrobials by poultry. Preventative Veterinary Medicine 62: 59–72.
  • HELMBOLT, C.F. and BRYANT, E.S. (1971) The pathology of necrotic enteritis in domestic fowl. Avian Diseases 15: 775–780.
  • HETLAND, H., CHOCT, M. and SVIHUS, B. (2004) Role of insoluble non-starch polysaccharides in poultry nutrition. World's Poultry Science Journal 60: 415–422.
  • HARALAMPU, S.G. (2000) Resistant starch – a review of the physical properties and biological impact of RS3. Carbohydrate Polymers 41: 285–292.
  • HAVARD, H.L., HUNTER, S.E.C. and TITBALL, R.W. (1992) Comparison of the nucleotide sequence and development of a PCR test for the epsilon toxin gene of Clostridium perfringens type B and type D. FEMS Microbiology Letters 97: 77–81.
  • HEIER, B.T., LOVLAND, A., SOLEIM, K.B., KALDHUSDAL, M. and JARP, J. (2001) A field study of naturally occurring specific antibodies against Clostridium perfringens alpha toxin in Norwegian broiler flocks. Avian Diseases 45: 724–732.
  • HERMANS, P.G. and MORGAN, K.L. (2003) The epidemiology of necrotic enteritis in broiler chickens in the UK; a cross-sectional survey. In: 10th Symposium of the international Society of Veterinary Epidemiology and Economics. Chile17th –21st November.
  • HETCH, D.W., VEDANTAM, G. and OSMOLSKI, J.R. (1999) Antimicrobial susceptibility testing, therapy (faculty presentation). Anaerobe 5: 421–429.
  • HOFACRE, C.L., JOHNSON, A.C., KELLY, B.J. and FROYMAN, R. (2002) Effect of a commercial competitive exclusion culture on the reduction of colonization of an antibiotic-resistant pathogenic Escherichia coli in day-old broiler chickens. Avian Diseases 46: 198–202.
  • HOFACRE, C.L., FROYMAN, R., GAUTRIAS, B., GEORGE, B., GOODWIN, M.A. and BROWN, J. (1998) Use of aviguard and other intestinal bioproducts in experimental Clostridium perfringens-associated necrotizing enteritis in broiler chickens. Avian Diseases 42: 579–584.
  • HOFSHAGEN, M. and KALDHUSDAL, M. (1992) Barley inclusion and avoparcin inclusion in broiler diets. 1. Effect on small intestinal bacterial flora and performance Poultry Science 71: 959–969.
  • HOPWOOD, D.E., PETHICK, D.W., PLUSKE, J.R. and HAMPSON, D.J. (2004) Addition of pearl barley to a rice-based diet for newly weaned piglets increases the viscosity of the intestinal contents, reduces starch digestibility and exacerbates post-weaning colibacillosis. British Journal of Nutrition 92: 419–427.
  • VAN IMMERSEEL, F., DE BUCK, J., PASMANS, F. HUYGHEBAERT, G., HAESEBROUCK, F. and DUCATELLE, R. (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathology 33: 537–549.
  • VAN IMMERSEEL, F., CAUWERTS, K., DEVRIESE, L.A., HAESEBROUCK, F. and DUCATELLE, R. (2002) Feed additives to control Salmonella in poultry. Worlds Poultry Science Journal 58: 501–513.
  • IJI, P.A. and TIVEY, D.R. (1998) Natural and synthetic oligosaccharides in broiler chicken diets. World's Poultry Science Journal 54: 129–143.
  • IMPEY, C.S., MEAD, G.C. and GEORGE, S.M. (1982) Competitive exclusion of salmonellas from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird. Journal of Hygiene 89: 479–490.
  • INBORR, J. (2001) Swedish poultry production without in-feed antibiotics – an opportunity for Clostridia? British Poultry Science 42: S64–S65.
  • JACKSON, M.E. ANDERSON, D.M., HSIAO, H.Y., MATHIS, G.F. and FODGE, D.W. (2003) Beneficial effect of beta -mannanase feed enzyme on performance of chicks challenged with Eimeria sp. and Clostridium perfringens. Avian Diseases 47: 759–763.
  • JOINT EXPERTADVISORYCOMMITTEE ON ANTIBIOTIC RESISTANCE (JETACAR) (1999) The use of antibiotics in food producing animals: antibiotic-resistant bacteria in animals and humans. Commonwealth of Australia. ISBN 1 86496 0612.
  • JUSKIEWICZ, J., ZDUNCZYCK, Z. and JANKOWSKI, J. (2004) Selected parameters of gastrointestinal tract metabolism of turkeys fed diets with flavomycin and different inulin content. World's Poultry Science Journal 60: 177–185.
  • JUSTIN, N., WALKER, N., BULLIFENT, H.L., SONGER, G., BUESCHEL, D.M., JOST, H., NAYLOR, C., MILLER, J., MOSS, D.S., TITBALL, R.W. and BASAK, A.K. (2002) The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties. Biochemistry 41: 6253–6262.
  • KALDHUSDAL, M. and LOVLAND, H. (2000) The economical impact of Clostridium perfringens is greater than anticipated. World Poultry 16: 50–51.
  • KALDHUSDAL, M. and SKJERVE, E. (1996) Association between cereal contents in the diet and incidence of necrotic enteritis in broiler chickens in Norway. Preventative Veterinary Medicine 28: 1–16.
  • KALDHUSDAL, M. and HOFSHAGEN, M. (1992) Barley inclusion and avoparcin inclusion in broiler diets. 2. Clinical, pathological and bacteriological findings in a mild form of necrotic enteritis. Poultry Science 71: 1145–1153.
  • KALDHUSDAL, M., SCHNEITZ, C., HOFSHAGEN, M. and SKJERV, E. (2001) Reduced incidence of Clostridium perfringens-associated lesions and improved performance in broiler chickens treated with normal intestinal bacteria from adult fowl. Avian Diseases 45: 149–156.
  • KALDHUSDAL, M., HOFSHAGEN, A., LOVLAND, H., LANGSTRAND and REDHEAD, K. (2000) Necrotic enteritis challenge models with broiler chickens raised on litter: evaluation of preconditions, Clostridium perfringens strains and outcome variables. FEMS Immunology and Medical Microbiology 24: 337–343.
  • KITA, K., NAGAO, K. and OKUMURA, J. (2005) Nutritional and tissue specificity of IGF-I and IGFBP-2 gene expression in growing chickens - A review. Asian-Australasian Journal of Animal Sciences 18: 747–754.
  • KLASING, K.C. (1998) Nutritional modulation of resistance to infectious diseases. Poultry Science 77: 1119–1125.
  • KLEESSEN, B., HARTMANN, L. and BLAUT, M. (2003) Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. British Journal of Nutrition 89: 597–606.
  • KNARREBORG, A., SIMON, M.A., ENGBERG, R.M., JENSEN, B.B., TANNOCK, G.W. (2002) Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Applied and Environmental Microbiology 68: 5918–5924.
  • KOCHER, A., CHOCT, M., ROSS, G., BROZ, J. and CHUNG, T.K. (2003) Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. Journal of Applied Poultry Research 12: 275–283.
  • LAN, Y., VERSTEGEN, M.W.A., TAMMINGA, S. and WILLIAMS, B.A. (2005) The role of the commensal gut microbial community in broiler chickens. World's Poultry Science Journal 61: 95–104.
  • LANGHOUT, D.J., SCHUTTE, J.B., De JONG, J., SLOETJES, H., VERSTEGEN, M.W.A. and TAMMINGA, S. (2000) Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. British Journal of Nutrition 83: 533–540.
  • LA RAGIONE, R.M., NARBAD, A., GASSON, M.J. and WOODWARD, M.J. (2004) In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Letters in Applied Microbiology 38: 197–205.
  • LOVELAND, A. and KALDHUSDAL, M. (2001) Severely impaired production performance in broiler flocks with high incidence of Clostridium perfringens associated hepatitis. Avian Pathology 30: 73–81.
  • LOVLAND, A., KALDHUSDAL, M., REDHEAD, K., SKJERVE, E. and LILLEHAUG, A. (2004) Maternal vaccination against subclinical necrotic enteritis in broilers. Avian Pathology 33: 83–92.
  • LU, L.G., HUME, M.E. and PILLAI, S.D. (2005) Autoinducer 2-like activity in poultry-associated enteric bacteria in response to subtherapeutic antibiotic exposure. Avian Diseases 49: 74–80.
  • MANSOORI, B. and ACAMOVIC, T. (1998a) The excretion of minerals from broilers fed tannic acid, polyethylene glycol and protein. In: Toxic Plants and Other Natural Toxicants. T. Garland and A.C. Barr (Eds) CAB International, London, UK. Pp. 101–105.
  • MANSOORI, B. and ACAMOVIC, T. (1998b) The influence of tannic acid on amino acid digestibility by broilers. In: Toxic Plants and Other Natural Toxicants. GARLAND, T. and BARR, A.C. (Eds) CAB International, London UK. Pp. 106–110.
  • MARTEL, A., DEVRIESE, L.A., CAUWERTS, K., DE GAUSSEM, K., DECOSTERE, A. and HAESEBROUCK, F. (2004) Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials. Avian Pathology 33: 3–7.
  • MATEOS, G.G., LAZARO, R. and GRACIA, M.I. (2002) The feasibility of using nutritional modifications to replace drugs in poultry feeds. Journal of Applied Poultry Research 11: 437–452.
  • MCCRACKEN, K.J., PRESTON, C.M. and BUTLER, C. (2002) Effects of wheat variety and specific weight on dietary apparent metabolizable energy concentration and performance of broiler chicks. British Poultry Science 43: 253–260.
  • McDEVITT, R.M., BROOKER, J., ACAMOVIC, T. and SPARKS, N.H.C. (2005) The effect of non-starch polysaccharide inclusion in the diet on Clostridium perfringens in the gut of the broiler chicken. British Poultry Abstracts 1: 10–11.
  • MAKKAR, H.P.S. (2003) Quantification of tanins in tree and shrub foliage. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • MCDONEL, J.L. (1986) Toxins of Clostridium perfringens types A, B, C, D and E. In: Pharmacology of Bacterial Toxins. Dorner, F. and DREWS, J. (Eds) Pergamon Press, Oxford Pp. 477–517.
  • MELLOR, S. (2002) Enzymes make the grade. World Poultry 18(4): 26–28.
  • MORISHITA, Y., OOWADA, T., OZAKI, A. and MIZUTANI, T. (2002) Galactooligosaccharide in combination with Bifidobacterium and Bacteroides affects the population of Clostridium perfringens in the intestine of gnotobiotic mice. Nutrition Research 22: 1333–1341.
  • MORROW, C. (2001) Solving the problems of necrotic enteritis. British Poultry Science 42: S65–S67.
  • MCCARTNEY, E. (2002) The natural world strikes back. Poultry International January Pp. 36–42.
  • McREYNOLDS, J.L., BYRD, J.A., ANDERSON, R.C., MOORE, R.W., EDRINGTON, T.S., GENOVESE, K.J., POOLE, T.L., KUBENA, L.F. and NISBET, D.J. (2004) Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poultry Science 83: 1948–1952.
  • MIYATA, S., MINAMI, J., TAMAI, E., MATSUSHITA, O., SHIMAMOTO, S. and OKABE, A. (2002) Clostridium perfringens epsilon-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. Journal of Biological Chemistry 277: 39463–39468.
  • NISBET, D.J., CORRIER, D.E., SCANLAN, C.M., HOLLISTER, A.G., BEIER, R.C. and DELOACH, J.R. (1993) Effect of a defined continuous flow-derived bacterial culture and dietary lactose on Salmonella typhimurium colonisation in broiler chickens. Avian Disease 37: 1017–1025.
  • NORTON, R.A., HOPKINS, B.A., SKEELES, J.K., BEASLEY, J.N. and KREEGER, J.M. (1992) High mortality of domestic turkeys associated with Ascaridi dissimilis. Avian Diseases 36: 469–473.
  • NOVAK, J.S. and FRATAMICO, P.M. (2004) Evaluation of ascorbic acid as a quorum-sensing analogue to control growth, sporulation, and enterotoxin production in Clostridium perfringens. Journal of Food Science 69: FMS72–FMS78.
  • PEDERSEN, K., KALDHUSDAL, M., ENGSTROM, B., ENGBERG, R.M., LOVLAND, A., NAUERBY, B. and BJERRUM, L. (2004) Clostridium perfringens: a lurking threat for poultry farming? Dansk Veterinaertidsskrift 87: 18–22.
  • PETIT, L., MAIER, E., GIBERT, M., POPOFF, M.R. and BENZ, R. (2001) Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. Journal of Biological Chemistry 276: 15736–15740.
  • PIRVULESCU, M., DANES, M., GRUIA, M., IONITA, C., MALINETESCU, M., PANTA, L., POPESCU, V., POPOVICI, A., SIMION-GABOR, M. and TETU-OPORANU, M. (1999) Bioassays in HPCDIR and conventional piglets of the immunoamplifying properties of BIO-MOS (Alltech, USA), a probiotic. Studies and Researches in Veterinary Medicine 7: 51–65.
  • PHILLIPS-JONES, M.K. (2000) Use of a lux reporter system for monitoring rapid changes in alpha -toxin gene expression in Clostridium perfringens during growth. FEMS Microbiology-Letters. 188: 29–33.
  • PORTER, R.E. (1998) Bacterial enterides of poultry. Poultry Science 77: 1159–1165.
  • PRESCOTT, J.F. (1979) The prevention of experimentally induced necrotic enteritis in chickens by avoparcin. Avian Diseases 23: 1072–1074.
  • PUSZTAI, A. and BARDOCZ, S. (1996) Biological effects of plant lectins on the gastrointestinal tract: Metabolic consequences and applications. Trends in Glycoscience and Glycotechnology 8: 149–165.
  • RAVDIN, J.I., MURPHY, C.F., GUERRANT, R.L. and LONG-KRUG, S.A. (1985) Effect of antagonists of calcium and phospholipase A on the cytopathogenicity of Entamoeba histolytica. Journal of Infectious Diseases 152: 542–549.
  • REID, C.A. and HILLMAN, K. (1999) The effects of retrogradation and amylose/amylopectin ratio of starches on carbohydrate fermentation and microbial populations in the porcine colon. Animal Science 68: 503–510.
  • RIDDLE, C. and KONG, X. (1992) The influence of diet on necrotic enteritis in broiler chicks. Avian Disease 36: 499–503.
  • ROBERFROID, M.B. (2005) Introducing inulin-type fructans. British Journal of Nutrition 93: S13–S25.
  • ROBINS, C. and Brooker, J.D. (2005) The effects of Acacia aneura feeding on abomasal and intestinal structure and function in sheep. Animal feed Science and Technology. Special edition – Phytochemicals and livestock, Brooker, J. and Acamovic, T. (Eds) 121: 205–215.
  • ROOD, J.I. (1998) Virulence genes of Clostridium perfringens. Annual Review of Microbiology 52: 333–360.
  • ROOD, J.I. and COLE, S.T. (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiological Reviews 55: 621–648.
  • ROSS TECH (1999) Necrotic enteritis and associated conditions in broiler chickens. World Poultry 15: 44–47.
  • RUFF, M.D., REID, W.M. and RYAN, A.P. (1980) Anticoccidial activity of narasin in broiler chickens reared in floor pens. Poultry Science 59: 2008–2013.
  • SHANE, S. and VAN DER SLUIS, W. (2002) Global disease update 2002: more problems to be solved. World Poultry 18: 28–31.
  • SHANE, S.M., GYIMAH, J.E., HARRINGTON, K.S. and SNIDER, T.G. (1985) Etiology and pathogenesis of necrotic enteritis. Veterinary Research Communications 9: 269–287.
  • SHANE, S.M., GYMIAH, J. and OCHOA, R. (1981) Inter-relationship of intestinal coccidiosis and necrotic enteritis. Journal of American Veterinary Medical Association 197: 270 (Abstract).
  • SIRIKEN, B., BAYRAM, I. and ONOL, A.G. (2003) Effects of probiotics: alone and in a mixture of Biosacc (R) plus Zinc Bacitracin on the caecal microflora of Japanese quail. Research in Veterinary Science 75: 9–14.
  • SPRING, P., WENK, C., DAWSON, K.A. and NEWMAN, K.E. (2000) The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Science 79: 205–211.
  • SONGER, J.G. (1996) Clostridial enteric diseases of domestic animals. Clinical Microbiology Reviews 9: 216–234.
  • STANLEY, V.G., GRAY, C., DALEY, M., KRUEGER, W.F. and SEFTON, A.E. (2004) An alternative to antibiotic-based drugs in feed for enhancing performance of broilers grown on Eimeria spp.-infected litter. Poultry Science 83: 39–44.
  • STAVRIC, S. (1992) Defined cultures and prospects. International Journal of Food Microbiology 15: 245–263.
  • SURAI, P.F. (2002) Natural Antioxidants in Avian Nutrition and Production. Nottingham, University Press, Nottingham UK.
  • SVIHUS, B. (2001) Research note: a consistent low starch digestibility observed in pelleted broiler chicken diets containing high levels of different wheat varieties. Animal Feed Science and Technology 92: 45–49.
  • SVIHUS, B., JUVIK, E., HETLAND, H. and KROGDAHL, A. (2004) Causes for improvement in nutritive value of broiler chicken diets with whole wheat instead of ground wheat. British Poultry Science 45: 55–60.
  • SVIHUS, B., UHLEN, A.K. and HARSTAD, O.M. (2005) Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Technology In press.
  • TAKEDA, T., FUKATA, T., MIYAMOTO, T., SASAI, K., BABA, E. and ARAKAWA, A. (1995) The effects of dietary lactose and rye on cecal colonization of Clostridium-perfringens in chicks. Avian Diseases 39: 375–381.
  • TESTER, R.F., KARKALAS, J. and QI, X. (2004) Starch structure and digestibility. Enzyme substrate relationship. World's Poultry Science Journal 60: 186–195.
  • TITBALL, R.W. and ROOD, J.I. (2002) Clostridium perfringens: wound infections. Molecular Medical Microbiology 1–3: 1875–1903.
  • VAN DER SLUIS, W. (2000) Clostridial enteritis is an often underestimated problem. World Poultry 16: 42–43.
  • VETERINARY MEDICINES DIRECTORATE (2000) Sales of antimicrobial products used as veterinary medicines or growth promoters in the UK from 1993–1998. London, U.K. April 2000.
  • VETERINARYMEDICINES DIRECTORATE (2002) Sales of antimicrobial products authorised for use as veterinary medicines, antiprotozoals, antifungals, growth promoters and coccidiostats in the UK in 2002. London, U.K. June 2002.
  • VIERA, S.L. (2003) Nutritional implications of mould development in feedstuffs and alternatives to reduce the mycotoxin problem in poultry feeds. World's Poultry Science Journal 59: 111–122.
  • VISSIENNON, T., MENGER, S. and LANGHOF, I. (1996) Hepatic and renal ultrastructural lesions in experimental Clostridium perfringens type A enterotoxemia in chickens. Avian Diseases 40: 720–724.
  • WALDENSTEDT, L., ELWINGER, K., LUNDEN, A., THEBO, P., BEDFORD, M.R. and UGGLA, A. (2000) Intestinal digesta viscosity decreases during coccidial infection in broilers. British Poultry Science 41: 459–464.
  • WATERMAN, P.G. and MOLE, S. (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publishing, Oxford, U.K.
  • WATERS, M., SAVOIE, A., GARMORY, H.S., BUESCHEL, D., POPOFF, M.R. SONGER, J.G., TITBALL, R.W., MCCLANE, B.A. and SARKER, M.R. (2003) Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. Journal of Clinical Microbiology 41: 3584–3591.
  • WEURDING, R.E, VELDMAN, A, VEEN, A.M.G, VAN DER AAR, P.J and VERSTEGEN, M.W.A. (2001) Starch digestion in the small intestine of chickens differs among feedstuffs. Journal of Nutrition 131: 2329–2335.
  • WIERUP, M. (2001) The Swedish experience of the 1986 year ban of antimicrobial growth promotors, with special reference to animal health, disease prevention, productivity and usage of antimicrobials. Microbial Drug Resistance Mechanisms, Epidemiology and Disease 7: 183–190.
  • WILLIS, A.T. (1977) Anaerobic-bacteriology: clinical and laboratory practice. (3rd edition) Butterworths, London. 360 pp .
  • WILLIAMS, R.B. (2005) Intercurrent coccidosis and necrotic enteritis of chickens; rational, integrated disease management by maintenance of gut integrity. Avian Pathology 34: 159–180.
  • WILLIAMS, R.B. (2002) Anticoccidial vaccines for broiler chickens: pathways to success. Avian Pathology 31: 317–353.
  • WILLIAMS, R.B., MARSHALL, R.N., LA RAGIONE, R.M. and CATCHPOLE, J. (2003) A new method for the experimental production of necrotic enteritis and its use for studies on the relationships between necrotic enteritis, coccidiosis and anticoccidial vaccination of chickens. Parasitology Research 90: 19–26.
  • WILLIAMS, B.A., VERSTEGEN, M.W.A. and TAMMINGA, S. (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews 14: 207–227.
  • WORLD HEALTH ORGANISATION (W.H.O.) (1997) The medical impact of antimicrobial use in food animals. WHO/EMC/ZOO/97.4. Report of a W.H.O. meeting, Berlin, Germany.
  • XAVIER, K.B. and BASSLER, B.L. (2003) LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology 6: 191–197.
  • YOUN-HEEJEONG and NOH-JAEWUK, (2001) Screening of the anticoccidial effects of herb extracts against Eimeria tenella. Veterinary Parasitology 96: 257–263.
  • ZIMMER, M., VUKOV, N., SCHERER, S. and LOESSNER, M.J. (2002) The murein hydrolase of the bacteriophage phi 3626 dual lysis system is active against all tested Clostridium perfringens strains. Applied and Environmental Microbiology 68: 5311–5317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.