86
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians

, & ORCID Icon
Pages 863-877 | Received 29 Oct 2022, Accepted 30 May 2023, Published online: 15 Jun 2023

References

  • Turchinovich A, Samatov TR, Tonevitsky AG, et al. Circulating miRNAs: cell-cell communication function? Front Genet. 2013;4:119.
  • Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell. 2004;16(6):861–865.
  • Ricci Z, Romagnoli S, Ronco C. Cardiorenal syndrome. Crit Care Clin. 2021;37(2):335–347.
  • Ono K. 2017. MicroRNA-Linked heart disease and therapeutic potential. Translating MicroRNAs to the clinic. Amsterdam, Netherlands: Elsevier Inc.; p. 259–281.
  • Leclercq M, Diallo AB, Blanchette M. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Res. 2017;45(2):556–566.
  • Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci. 2012;37(11):460–465.
  • Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233.
  • Kumar S, Vijayan M, Bhatti JS, et al. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci. 2017;146:47–94.
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659.
  • Phuah NH, Nagoor NH. Regulation of MicroRNAs by natural agents: a new strategies in cancer therapies. Biomed Res Int. 2014;2014:804510.
  • Schickel R, Boyerinas B, Park SM, et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27(45):5959–5974.
  • Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA. 2009;106(11):4402–4407.
  • Wang WT, Chen YQ. Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol. 2014;7(1):1–9.
  • Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for alzheimer’s disease. PLoS One. 2013;8(7):e69807.
  • Taïbi F, Metzinger-Le Meuth V, M’Baya-Moutoula E, et al. Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim Biophys Acta. 2014;1842(1):88–98.
  • Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–984.
  • Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes. 2010;59(7):1794–1802.
  • Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAS in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–1325.
  • Ronco C, Bellasi A, Di Lullo L. Cardiorenal syndrome: an overview. Adv Chronic Kidney Dis. 2018;25(5):382–390.
  • Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109(31):E2110-6.
  • Fan PC, Chen CC, Peng CC, et al. A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. J Transl Med. 2019;17(1):139.
  • Björklund M. Cell size homeostasis: metabolic control of growth and cell division. Biochim Biophys Acta Mol Cell Res. 2019;1866:409–417.
  • Ciesla M, Skrzypek K, Kozakowska M, et al. MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem. 2011;401(7):2051–2061.
  • Matsuda A, Yan IK, Foye C, et al. MicroRNAs as paracrine signaling mediators in cancers and metabolic diseases. Best Pract Res Clin Endocrinol Metab. 2016;30(5):577–590.
  • Hüttenhofer A, Mayer G. Circulating miRNAs as biomarkers of kidney disease. Clin Kidney J. 2017;10(1):27–29.
  • Xu J, Zhao J, Evan G, et al. Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med (Berl). 2012;90(8):865–875.
  • Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J of Cardiovasc Trans Res. 2010;3(3):251–255.
  • Gupta SK, Bang C, Thum T. Circulating MicroRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet. 2010;3(5):484–488.
  • Rana I, Kompa AR, Skommer J, et al. Contribution of microRNA to pathological fibrosis in cardiorenal syndrome: impact of uremic toxins. Physiol Rep. 2015;3(4):e12371–e12371.
  • Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating MicroRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–2390.
  • Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol. 2015;4(3):219–244.
  • Broughton JP, Lovci MT, Huang JL, et al. Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell. 2016;64(2):320–333.
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.
  • Ohrt T, Muetze J, Svoboda P, et al. Intracellular localization and routing of miRNA and RNAi pathway components. Curr Top Med Chem. 2012;12(2):79–88.
  • Roya K, et al. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 2016;22(7):1085–1098.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.
  • Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712.
  • Morris KV, Santoso S, Turner AM, et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4(11):e1000258.
  • Katayama S, Tomaru Y, Kasukawa T, et al. Molecular biology: antisense transcription in the mammalian transcriptome. Science. 2005;309(5740):1564–1566.
  • Zhang X, Zuo X, Yang B, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607–619.
  • Wei Y, Li L, Wang D, et al. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 2014;289(15):10270–10275.
  • Brameier M, Herwig A, Reinhardt R, et al. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2011;39(2):675–686.
  • Yekta S, Shih IH, Bartel DP. MicroRNA-Directed cleavage of HOXB8 mRNA. Science. 2004;304(5670):594–596.
  • Hennino MF, Buob D, Van der Hauwaert C, et al. MiR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy. Sci Rep. 2016;6(1):1–9.
  • Wang J, Gao Y, Ma M, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 2013;67(2):537–546.
  • Lange T, Artelt N, Kindt F, et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury. J Cell Mol Med. 2019;23(7):4839–4843.
  • Lorenzen JM, Kaucsar T, Schauerte C, et al. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol. 2014;25(12):2717–2729.
  • Brigant B, Metzinger-Le Meuth V, Massy ZA, et al. Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. Clin Kidney J. 2017;10(1):30–37.
  • Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal MicroRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798.
  • Delić D, Eisele C, Schmid R, et al. Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One. 2016;11(3):e0150154.
  • Güçlü A, Koçak C, Koçak FE, et al. Micro RNA-320 as a novel potential biomarker in renal ischemia reperfusion. Ren Fail. 2016;38(9):1468–1475.
  • Qin LY, Wang MX, Zhang H. MiR-133a alleviates renal injury caused by sepsis by targeting BNIP3L. Eur Rev Med Pharmacol Sci. 2020;24(5):2632–2639.
  • Saikumar J, Hoffmann D, Kim T-M, et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci. 2012;129(2):256–267.
  • Zhang W, Li X, Tang Y, et al. MiR-155-5p implicates in the pathogenesis of renal fibrosis via targeting SOCS1 and SOCS6. Oxid Med Cell Longevity. 2020;2020:1–11.
  • Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 2013;305(8):F1220–F1227.
  • Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a pole in cardiac hypertrophy? Am J Pathol. 2007;170(6):1831–1840.
  • Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007;116(3):258–267.
  • Xu L, Tian L, Yan Z, et al. Diagnostic and prognostic value of miR-486-5p, miR-451a, miR-21-5p and monocyte to high-density lipoprotein cholesterol ratio in patients with acute myocardial infarction. Heart Vessels. 2023;38(3):318–331.
  • van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255–18260.
  • Lakhani HV, Khanal T, Gabi A, et al. Developing a panel of biomarkers and miRNA in patients with myocardial infarction for early intervention strategies of heart failure in west Virginian population. PLoS One. 2018;13(10):e0205329.
  • Fiedler J, Jazbutyte V, Kirchmaier BC, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–730.
  • Zhang M, Cheng YJ, Sara JD, et al. Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chin Med J (Engl). 2017;130(1):51–56.
  • Wang H, Lian X, Gao W, et al. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered. 2022;13(2):3826–3839.
  • Chen C, Wang Y, Yang S, et al. MiR-320a contributes to atherogenesis by augmenting multiple risk factors and down-regulating SRF. J Cell Mol Med. 2015;19(5):970–985.
  • Goren Y, Kushnir M, Zafrir B, et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14(2):147–154.
  • Habibi P, Alihemmati A, Nasirzadeh M, et al. Involvement of microRNA-133 and-29 in cardiac disturbances in diabetic ovariectomized rats. Iran J Basic Med Sci. 2016;19(11):1177–1185.
  • Danowski N, Manthey I, Jakob HG, et al. Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery. Cardiology (Switzerland). 2013;125(2):125–130.
  • Boštjančič E, Zidar N, Štajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010;115(3):163–169.
  • Zhang B, Li B, Qin F, et al. Expression of serum microRNA-155 and its clinical importance in patients with heart failure after myocardial infarction. J Int Med Res. 2019;47(12):6294–6302.
  • Git A, Dvinge H, Salmon-Divon M, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16(5):991–1006.
  • Trevino V, Falciani F, Barrera-Saldaña HA. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med. 2007;13(9–10):527–541.
  • Romaine S, Charchar PR, Samani FJ, et al. Circulating microRNAs and hypertension - From new insights into blood pressure regulation to biomarkers of cardiovascular risk. Curr Opin Pharmacol. 2016;27:1–7.
  • Li N, Ma J, Guarnera MA, et al. Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. J Cancer Res Clin Oncol. 2014;140(1):145–150.
  • Miotto E, Saccenti E, Lupini L, et al. Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2638–2642.
  • Meister G, Landthaler M, Patkaniowska A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–197.
  • Du J, Cao X, Zou L, et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One. 2013;8(5):e63390.
  • Kumar D, Narang R, Sreenivas V, et al. Circulatory miR-133b and miR-21 as novel biomarkers in early prediction and diagnosis of coronary artery disease. Genes. 2020;11(2):164.
  • Markou A, Zavridou M, Lianidou ES. MiRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer. 2016;7:19–27.
  • Zhong X, Chung ACK, Chen HY, et al. MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663–674.
  • Liu XJ, Hong Q, Wang Z, et al. MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: a potential role in renal fibrosis. Mol Cell Biochem. 2016;411(1–2):181–189.
  • Dickhout JG, Carlisle RE, Austin, RC. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ Res. 2011;108(5):629–642.
  • Bonneux L, Barendregt JJ, Meeter K, et al. Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: the future rise of heart failure. Am J Public Health. 1994;84(1):20–28.
  • Robinson S, Follo M, Haenel D, et al. Chip-based digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction patients article. Acta Pharmacol Sin. 2018;39(7):1217–1227.
  • Sluijter JPG, Verhage V, Deddens JC, et al. Microvesicles and exosomes for intracardiac communication. Cardiovasc Res. 2014;102(2):302–311.
  • Deng X, Liu Y, Luo M, et al. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget. 2017;8(38):63038–63046.
  • Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 2012;16(9):2150–2160.
  • Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.
  • Kaltsas E, Chalikias G, Tziakas D. The incidence and the prognostic impact of acute kidney injury in acute myocardial infarction patients: current preventive strategies. Cardiovasc Drugs Ther. 2018;32(1):81–98.
  • Qian L, Van Laake LW, Huang Y, et al. miR-24 inhibits apoptosis and represses bim in mouse cardiomyocytes. J Exp Med. 2011;208(3):549–560.
  • Dimmeler S, Zeiher AM. Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur Heart J. 2010;31(22):2705–2707.
  • Xiao M, Li J, Li W, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14(10):1326–1334.
  • Hoekstra M, van der Lans CAC, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394(3):792–797.
  • Yan L, Guo N, Cao Y, et al. miRNA-145 inhibits myocardial infarction-induced apoptosis through autophagy via Akt3/mTOR signaling pathway in vitro and in vivo. Int J Mol Med. 2018;42(3):1537–1547.
  • Higashi K, Yamada Y, Minatoguchi S, et al. MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy. Am J Physiol Heart Circ Physiol. 2015;309(11):H1813–H1826.
  • Ma MKM, Yung S, Chan, TM MTOR inhibition and kidney diseases. Transplantation. 2018;102(1):S32–S40.
  • Xu CN, Kong LH, Ding P, et al. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165848.
  • Cordes KR, Sheehy NT, White MP, et al. MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–710.
  • Gao H, Guddeti RR, Matsuzawa Y, et al. Plasma levels of microRNA-145 are associated with severity of coronary artery disease. PLoS One. 2015;10(5):e0123477.
  • Chen Y, Sun Y, Rao Q, et al. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status. Oncotarget. 2015;6(31):31203–31215.
  • Du H, Zhao Y, Yin Z, et al. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci. 2021;17(2):402–416.
  • Lorenzen JM, Kielstein JT, Hafer C, et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2011;6(7):1540–1546.
  • Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009;119(17):2357–2366.
  • Wang QG, Cheng B, He YZ, et al. miR-320a in serum exosomes promotes myocardial fibroblast proliferation via regulating the PIK3CA/Akt/mTOR signaling pathway in HEH2 cells. Exp Ther Med. 2021;22(2):1–14.
  • Chai J, Tarnawski AS. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharmacol. 2002;53:147–157.
  • Van Dam EM, Govers R, James, DE. Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane. Mol Endocrinol. 2005;19(4):1067–1077.
  • Ling HY, Ou HS, Feng SD, et al. Changes in microRNA (miR) profile and effects of mir-320 in insulin-resistant 3t3-l1 adipocytes. Clin Exp Pharmacol Physiol. 2009;36(9):e32–e39.
  • Yu H, Tigchelaar W, Koonen DPY, et al. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes. PLoS One. 2013;8(11):e80815.
  • Hartmann D, Thum T. MicroRNAs and vascular (dys) function. Vascul Pharmacol. 2011;55(4):92–105.
  • Yu H, Lu Y, Li Z, et al. microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets. 2014;15(9):817–828.
  • Zhu L, Xiang M. The correlations of circulating microRNA-133a with the risk and severity of coronary heart disease. Int J Clin Exp Med. 2017;10:972–978.
  • Parthenakis FI, Marketou ME, Kontaraki JE, et al. Comparative microRNA profiling in relation to urinary albumin excretion in newly diagnosed hypertensive patients. J Hum Hypertens. 2016;30(11):685–689.
  • Loeser H, Von Brandenstein M, Herschung A, et al. ET-1 induced downregulation of MRP2 via miRNA 133a-a marker for tubular nephrotoxicity? Am J Nephrol. 2015;41(3):191–199.
  • Xiao Y, Zhao J, Tuazon JP, et al. MicroRNA-133a and myocardial infarction. Cell Transplant. 2019;28(7):831–838.
  • De Rosa S, Fichtlscherer S, Lehmann R, et al. Transcoronary concentration gradients of circulating MicroRNAs. Circulation. 2011;124(18):1936–1944.
  • Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–666.
  • Gidlöf O, Andersson P, Van Der Pals J, et al. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology. 2011;118(4):217–226.
  • Sang HQ, Jiang ZM, Zhao QP, et al. MicroRNA-133a improves the cardiac function and fibrosis through inhibiting akt in heart failure rats. Biomed Pharmacother. 2015;71:185–189.
  • Muraoka N, Yamakawa H, Miyamoto K, et al. MiR‐133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014;33(14):1565–1581.
  • Cao RY, Li Q, Miao Y, et al. The emerging role of MicroRNA-155 in cardiovascular diseases. Biomed Res Int. 2016;2016:1–5.
  • Faraoni I, Antonetti FR, Cardone J, et al. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta Mol Basis Dis. 2009;1792:497–505.
  • Wang H, Peng W, Shen X, et al. Circulating levels of inflammation-associated mir-155 and endothelial-enriched mir-126 in patients with end-stage renal disease. Braz J Med Biol Res. 2012;45(12):1308–1314.
  • Li Y, Sun Y, Liu F, et al. Norcantharidin inhibits renal interstitial fibrosis by blocking the tubular Epithelial-Mesenchymal transition. PLoS One. 2013;8(6):e66356.
  • Trusinskis K, Lapsovs M, Paeglite S, et al. Plasma circulating microRNAs in patients with stable coronary artery disease - impact of different cardiovascular risk profiles and glomerular filtration rates. J Clin Transl Res. 2021;7(2):270–276.
  • Andreou I, Sun X, Stone PH, et al. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015;21(5):307–318.
  • Bruen R, Fitzsimons S, Belton O. MiR-155 in the resolution of atherosclerosis. Front Pharmacol. 2019;10:463.
  • Hao L, Wang XG, Cheng JD, et al. The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Cardiovasc Pathol. 2014;23(4):217–223.
  • Tian FJ, An LN, Wang GK, et al. Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res. 2014;103(1):100–110.
  • Lekawanvijit S, Kompa AR, Zhang Y, et al. Myocardial infarction impairs renal function, induces renal interstitial fibrosis, and increases renal KIM-1 expression: implications for cardiorenal syndrome. Am J Physiol Heart Circulat Physiol. 2012;302(9):H1884–H1893.
  • Zununi Vahed S, Poursadegh Zonouzi A, Ghanbarian H, et al. Differential expression of circulating miR-21, miR-142-3p and miR-155 in renal transplant recipients with impaired graft function. Int Urol Nephrol. 2017;49(9):1681–1689.
  • Culleton BF, Hemmelgarn BR. Is chronic kidney disease a cardiovascular disease risk factor? Semin Dial. 2003;16(2):95–100.
  • Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499–506.
  • Qin W, Chung ACK, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–1474.
  • Jiang L, Zhou Y, Xiong M, et al. Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells. Exp Cell Res. 2013;319(14):2254–2265.
  • Fang Y, Yu X, Liu Y, et al. miR-29C is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-α activation. Am J Physiol Renal Physiol. 2013;304(10):F1274–F1282.
  • Maurer B, Stanczyk J, Jüngel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–1743.
  • Samanta S, Balasubramanian S, Rajasingh S, et al. MicroRNA: a new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med. 2016;26(5):407–419.
  • Mohamed SE, Ghanoum RA, EL-Abed SF. MicroRNA29-a as diabetic nephropathy biomarker in diabetic patients (type 2). Med J Cairo Univ. 2019;87:2593–2597.
  • Liu Y, Taylor NE, Lu L, et al. Renal medullary MicroRNAs in dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55(4):974–982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.