46
Views
13
CrossRef citations to date
0
Altmetric
Review Papers

Two Decades of Research on Etiology and Genetic Factors in the Abdominal Aortic Aneurysm (AAA) - with a Glimpse into the 21st Century

&
Pages 187-196 | Published online: 14 Mar 2016

References

  • Clifton M. A. Familial abdominal aortic aneurysms. Br J Surg, 1977, 64: 765–6.
  • Tilson M. D. In: Discussion of Busuttil R. W., Abou- Zamzam A. M., Machleder H. I. Collagenase activity of the human aorta: A comparison of patients with and without abdominal aortic aneurysms. Arch Surg, 1980, 115: 1373–8.
  • Tilson M. D., Seashore M. R. Fifty families with abdominal aortic aneurysms in two or more first-order relatives. Am J Surg, 1984, 147: 551.
  • Norrgârd Ö., Rais O., Ängquist K. A. Familial occurrence of abdominal aortic aneurysms. Surgery, 1984, 95: 650–6.
  • Johansen K., Koepsell T. Familial tendency for abdominal aortic aneurysms. JAMA, 1986, 256: 1934–36.
  • Collin J., Walton J. Is abdominal aortic aneurysm familial ? BMJ, 1989, 299: 493.
  • Darling III R. C., Brewster D. e., Darling R. e., LaMura- glia G. M., Moncure A. C., Cambria R. P., Abbott W. M. Are familial abdominal aortic aneurysms different ? J Vasc Surg, 1989, 10: 39–43.
  • Powel J. T., Greenhalgh R. M. Multifactorial inheritance of abdominal aortic aneurysm. Eur J Vasc Surg, 1987, 1: 29–31.
  • Majumder P. P., St Jean P. L., Ferrell R. E., Webster M. W., Steed D. L. On the inheritance of abdominal aortic aneurysm. Am J Hum Genet, 1991, 48: 164–70.
  • Verloes A., Sakalihasan N., Koulischer L., Limet R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J Vasc Surg, 1995, 21: 646–55.
  • Dietz H. C., Cutting G. R., Pyeritz R. E. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 1991, 352: 337.
  • TILSON M. D., Stansel H. C. Differences in results for aneurysm versus occlusive disease after bifurcation grafts: results of 100 elective grafts. Arch Surg, 1980, 115: 1173–5.
  • Tilson M. D. Decreased hepatic copper levels: A possible chemical marker for the pathogenesis of aortic aneurysms in man. Arch Surg, 1982, 117: 1212–1213.
  • Tilson M. D., Davis G. Deficiencies of copper and a compound with ion-exchange characteristics of pyridinoline in skin from patients with abdominal aortic aneurysms. Surgery, 1983, 94: 134.
  • Tilson M. D., Seashore M. R. Fifty families with abdominal aortic aneurysms in two or more first-order relatives. Am J Surg, 1984, 147: 551.
  • Blanchard J. F. Epidemiology of abdominal aortic aneurysms. Epidemiol Rev, 1999, 21: 207–21.
  • Tilson M. D. Further studies of a putative crosslinking amino acid (3-deoxy-pyridinoline) in skin from patients with abdominal aortic aneurysms. Surgery, 1985, 98: 888–891.
  • Dobrin P. B. Mechanical properties of arteries. Physiol Rev, 1978, 58: 397–460.
  • Roach M., Burton A. C. The reason for the shape of the disten- sibility curves of arteries. Can J Biochem, 1957, 35: 681–690.
  • Dobrin P. B., Baker W. H., Gley W. C. Elastolytic and col- lagenolytic studies of arteries: implications for the mechanical properties of aneurysms. Arch Surg, 1984, 119: 405–409.
  • Tilson M. D., Elefteriades J., Brophy C. M. Tensile strength and collagen in abdominal aortic aneurysm disease. in: The Cause and Management of Aneurysms. Greenhalgh R. M., Mannick J. A., Powell J. T. (ed.). WB Saunders Company, London 1990, 97–104.
  • Pope F. M., Martin G. R., McKusick V. A. Patients with type IV EDS lack type III collagen. Proc Natl Acad Sci USA, 1975, 72: 1314.
  • Kontusaari S., Tromp G., Kuivaniemi H. et al. A mutation in the gene for type III procollagen (COL3A1) in a family with aortic aneurysms. J Clin Invest, 1990, 86: 14–65.
  • Anderson D. W., Edwards T. K., Ricketts M. H., Kuivaniemi H., Tromp G., Stolle C. A., Deak S. B., Boyd C. D. Multiple defects in type iii collagen synthesis are associated with the pathogene- sis of abdominal aortic aneurysms. Ann N Y Acad Sci 1996, 800: 294–8.
  • Tromp G., Wu Y., Prockop D. J. et al. Sequencing of cDNA from 50 unrelated patients reveals that mutations in the triple-helical domain of type iii procollagen are an infrequent cause of aortic aneurysms. J Clin Invest, 1993, 19: 2539.
  • Powell J. T., Adamson J., MacSweeney S. T., Greenhalgh R. M., Humphries S. E., Henney A. M. Influence of type III collagen genotype on aortic diameter and disease. Br J Surg, 1993, 80 (10): 1246–8.
  • Powell J. T., MacSweeney S. T., Greenhalgh R. M., Turner R. J., Henney A. M. Interaction between fibrillin genotype and blood pressure and the development of aneurysmal disease. Ann N Y Acad Sci, 1996, 800: 198–207.
  • MacSweeney S. T., Skidmore C., Turner R. J., Sian M., Brown L., Henney A. M., Greenhalgh R. M., Powell J. T. unravelling the familial tendency to aneurysmal disease: popliteal aneurysm, hypertension and fibrillin genotype. Eur J Vasc Endovasc Surg, 1996, 12 (2): 162–6.
  • Tilson M. D. Histochemistry of aortic elastin in patients with nonspecific AAA disease. Arch Surg, 1988, 123: 503–5.
  • Rizzo R. J., McCarthy W. J., Dixit S. N., Lilly M. P., Shevely V. P., Flinn W. R. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg, 1989, 10: 365–373.
  • Sumner D. S., Hokanson D. E., Strandness D. E. Jr.Stress-strain characteristics and collagen-elastin content of abdominal aortic aneurysms. Surg Gynecol Obstet, 1970, 130: 459–466.
  • Wolinsky H., Glagov S. Comparison of abdominal and thoracic aortic medial structure in mammals: Deviation of man from the usual pattern. Circ Res, 1969, 25: 677–686.
  • Minion D., Davis V. A., Najezchleb P. A. et al. Elastin is increased in abdominal aortic aneurysms. J Sur Res, 1994, 57: 443–6.
  • White J. V., Haas K., Phillips S., Comerato A. J. Adventitial elastolysis is a primary event in aneurysm formation. J Vasc Surg, 1993, 17: 371.
  • Tilson M. D., 1988, op. cit., 503–5.
  • Nackman G. B., Karkowski F. J., Tilson M. D. et al. Elastin degredation products induce adventitial angiogenesis in the Andijar/Dobrin rat aneurysm model. Surgery, 1997, 122: 39.
  • Cameliet P., Moons L., Collen D. et al. Urokinases-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet, 1997, 17: 439.
  • Busuttil R. W., Abou-Zamzam A. M., Machleder H. I. Collagenase activity of the human aorta. A comparison of patients with and without abdominal aortic aneurysms. Arch Surg, 1980, 115 (11): 1373–8.
  • Vine N., Powell J. T. Metalloproteinases in degenerative aortic disease. Clin Sci, 1991, 81 (2): 233–9.
  • Webster M. W., McAuley C. E., Steed D. L., Miller D. D., Evans C. H. Collagen stability and collagenolytic activity in the normal and aneurysmal human aorta. Am Journal of Surgery, 1991, 161: 635–638.
  • Evans C. H., Georgescu H. I., Lin C. W., Mendelow D., Steed D. L., Webster M. W. Inducible synthesis of collagenase and other neutral metalloproteinases by cells of aortic origin. Jounal Surg Res, 1991, 51 (5): 399–404.
  • Ibid.
  • Cohen J. R., Mandell C., Wise L. Characterization of human aortic elastase found in patients with abdominal aortic aneurysms. Surg Gynecol Obstet, 1987, 165 (4): 301–4.
  • Cohen J. R., Keegan L., Sarafati I., Danna D., Ilardi C., Wise L. Neutrophil chemotaxis and neutrophil elastase in the aortic wall in patients with abdominal aortic aneurysms. J Invest Surg, 1991, 4 (4): 423–30.
  • Cohen J. R., Sarfati I., Danna D., Wise L. Smooth muscle cell elastase, atherosclerosis, and abdominal aortic aneurysms. Ann Surg, 1992, 216 (3): 327–30.
  • Dubick M. A., Hunter G. C., Perez-Lizano E., Mar G., Geokas M. C. Assessment of the role of pancreatic proteases in human abdominal aortic aneurysms and occlusive disease. Clin Chim Acta, 1988, 177 (1): 1–10.
  • Woessner J. F. Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J, 1991, 5: 2145–54.
  • Murphy G., Docherty A. J. P. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol, 1992, 7: 1205.
  • Newman K. M., Jean-Claude J., Hong L., Scholes J. V., Ogata Y., Nagase H., Tilson M. D. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vasc Surg, 1994, 20: 814–20.
  • Nollendorfs A., Greiner T. C., Nagase H., Baxter B. T. The expression and localization of membrane type-1 matrix metallo- proteinase in human abdominal aortic aneurysms. J Vasc Surg, 2001, 34 (2): 316–22.
  • Goodall S., Crowther M., Hemingway D. M., Bell P. R., Thompson M. M. Ubiquitous elevation of matrix metallopro- teinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation, 2001, 104 (3): 304–9.
  • Yamashita A., Noma T., Nakazawa A., Saito S., Fujioka K., Zempo N., Esato K. Enhanced expression of matrix metallopro- teinase-9 in abdominal aortic aneurysms. World J Surg, 2001, 25 (3): 259–65.
  • Vine N., Powell J. T. Metalloproteinases in degenerative aortic disease. Clin Sci, 1991, 81: 233–9.
  • Gurjar M. V., Deleon J., Sharma R. V., Bhalla R. C. Role of reactive oxygen species in IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. Am J Physiol Heart Circ Physiol, 2001, 281: H2568–74.
  • Sangiorgi G., D’Averio R., Mauriello A. et al. Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation, 2001, 104 (12 Suppl 1): 1288–95.
  • Lorelli D. R., Jean-Claude J. M., Fox C. J., Clyne J., Cambria R. A., Seabrook G. R., Towne J. B. Response of plasma matrix metalloproteinase-9 to conventional abdominal aortic aneurysm repair or endovascular exclusion: implications for endoleak. J Vasc Surg, 2002, 35 (5): 916–22.
  • Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet, 1990, 6: 121–5.
  • Rizzo R. J., McCarthy W. J., Dixit S. N., Lilly M. P., Shevely V. P., Flinn W. R. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg, 1989, 10: 365–73.
  • Elmore J. R., Keister B. F., Franklin D. P., Youkey J. R., Carey D. J. Expression of matrix metalloproteinases and TIMPs in human abdominal aortic aneurysms. Ann Vasc Surg, 1998, 12 (3): 221–8.
  • Silence J., Collen D., Lijnen H. R. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactiva- tion of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Comment in: Circ Res, 2002, 90 (8): 836–7.
  • Jean-Claude J., Newman K. M., Tilson M. D. et al. Possible key role for plasmin in the pathogenesis of abdominal aortic aneurysms. Surgery, 1994, 116: 472.
  • Shireman P. K., McCarthy W. J., Pearce W. H., Shively V. P., Cipollone M., Kwaan H. C. Elevations of tissue-type plasmino- gen activator and differential expression of urokinase-type plas- minogen activator in diseased aorta. J Vasc Surg, 1997, 25 (1): 157–64.
  • Rossaak J. I., Van Rij A. M., Jones G. T., Harris E. L. Association of the 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms. J Vasc Surg, 2000, 31: 1026–32.
  • Jones K., Powell J., Brown L., Greenhalgh R., Jormsjo S., Eriksson P. The influence of 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene promoter on the incidence, growth and operative risk of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg, 2002, 23 (5): 421–5.
  • Cronenwett J. L., Murphy T. F., Zelenock G. B. et al. Actuarial analysis of variables associated with rupture of small abdominal aortic aneurysms. Surgery, 1985, 98: 472–483.
  • Cohen J. R., Sarfati I., Ratner L., Tilson D. Alpha-1 antitrypsin phenotypes in patients with abdominal aortic aneurysms. J Surg Res, 1990, 49 (4): 319–21.
  • Schardey H. M., Hernandez-Richter T., Klueppelberg U., Tutsch-Bauer E., Lauterjung L. Alleles of the alpha-1-anti- trypsin phenotype in patients with aortic aneurysms. Cardiovasc Surg (Torino), 1998, 39 (5): 535–9.
  • Elzouki A. N., Ryden Ahlgren A., Lanne T., Sonesson B., Eriksson S. Is there a relationship between abdominal aortic aneurysms and alpha-1 antitrypsin deficiency (PiZ) ? Eur J Vasc Endovasc Surg, 1999, 17 (2): 149–54.
  • Lindholt J. S., Heickendorff L., Antonsen S., Fasting H., Henneberg E. W. Natural history of abdominal aortic aneurysm with and without coexisting chronic obstructive pulmonary disease. J Vasc Surg, 1998, 28 (2): 226–33.
  • Lederle F. A., Wilson S. E., Johnson G. R. et al. for the ADAM VA Cooperative Study Group. Design of the abdominal aortic aneurysm detection and management (ADAM) Study. J Vasc Surg, 1994, 20: 296–303.
  • Lederle F. A., Johnson G. R., Wilson S. E. et al. for the Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Prevalence and associations of abdominal aortic aneurysm detected through screening. Ann Intern Med, 1997, 126: 441–449.
  • Lederle F. A., Johnson G. R., Wilson S. E. et al. for the Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. The Aneurysm Detection and Management Study Screening Program Validation Cohort and Final Results. Arch Intern Med, 2000, 160: 1425–1430.
  • Tilson M. D., Stansel H. C. Differences in results for aneurysms vs. occlusive disease after bifurcation grafts: results of 100 elective grafts. Arch Surg, 1980, 115: 1173.
  • Yanagi H., Sasaguri Y., Sugama K., Morimatsu M., Nagase H. Production of tissue collagenase (matrix metalloproteinase 1) by human aortic smooth muscle cells in response to platelet-derived growth factor. Atherosclerosis, 1992, 91: 207–216.
  • Walters C. L. Reactions of nitrate and nitrite in foods with special reference to the determination of N-nitroso compounds. Food Add Contam, 1992, 9 (5): 441–447.
  • Paik D. C., Dillon J., Galicia E., Tilson M. D. The Nitrite/Collagen Reaction: non-enzymatic nitration as a model system for age-related damage. Connective Tissue Research, 2001, 42 (2): 111–122.
  • Walker D. I., Bloor K., Williams G., Gillie I. Inflammatory aneurysms of the abdominal aorta. Br J Surg, 1972, 59: 609–14.
  • Sterpetti A. V., Hunter W. J., Feldhaus R. J. et al. Inflammatory aneurysms of the abdominal aorta: incidence, pathologic, and etiologic considerations. J Vasc Surg, 1989, 9: 643–50.
  • Rasmussen T. E., Hallet J. W. Jr. Inflammatory aortic aneurysms: A clinical review with new perspectives in pathogenesis. Ann Surg, 1997, 225: 155.
  • Rizzo R. J., McCarthy W. J., Dixit S. N., Lilly M. P., Shively V. P., Flinn W. R., Yao J. S. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg, 1989, 10 (4): 365–73.
  • Brophy C. M., Reilly J. M., Smith G. J. W., Tilson M. D. The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann Vasc Surg, 1991, 5: 229–233.
  • Tilson M. D. Similarities of an autoantigen in aneurysmal disease of the human abdominal aorta to a 36-kDa microfibril associated bovine aortic glycoprotein. Biochem Biophys Res Commun, 1995, 213: 40–3.
  • Pearce W. H., Kock A., Haines G. K., Mesh C., Parikh D., Yao J. S. T. Cellular components of and immune response in abdominal aortic aneurysms. Surg Forum, 1991, 13: 328–30.
  • Koch A. E., Haines G. K., Rizzo R. J., Radosevich J. A., Pope R. M., Robinson P. G. et al. Human abdominal aortic aneurysms: immunophenotypic analysis suggesting an immunemediated response. Am J Pathol, 1990, 137: 1199–213.
  • Pasquinelli G., Preda P., Gargiulo M., Vici M., Cenacchi G., Stella A. et al. An immunohistochemical study of inflammatory abdominal aortic aneurysms. J Submicrosc Cytol Pathol, 1993, 25: 103–12.
  • Lopez-Candales A., Holmes D. R., Liao S., Scott M. J., Wickline S. A., Thompson R. W. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 1997, 150: 993–1007.
  • Theocharis A. D., Tsolakis I., Tsengenidis T., Karamanos N. K. Human abdominal aortic aneurysm is closely associated with compositional and specific structural modifications at the gly- cosaminoglycan level. Atherosclerosis, 1999, 145 (2): 359–68.
  • Galis Z. S., Muszynski M., Sukhova G. K., Simon-Morrissey E., Unemori E. N., Lark M. W., Amento E., Libby P. Cytokine- stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res, 1994, 75 (1): 181–9.
  • Brophy C. M., Reilly J. M., Smith G. J. W., Tilson M. D. op. cit., 229–233.
  • Gregory A. J., Yin N. X., Capella J., Xia S., Newman K. M., Tilson M. D. Features of autoimmunity in the abdominal aortic aneurysm. Arch Surg, 1996, 131: 85–8.
  • Beckman E. N. Plasma cell infiltrates in abdominal aortic aneurysm. Am J Clin Pathol, 1986, 85: 21–24.
  • Tilson M. D., Ozsvath K. J., Hirose H., Xia S. A genetic basis for autoimmune manifestations in the abdominal aortic aneu- rysm resides in the MHC class II locus DR-beta-1. Ann N Y Acad Sci, 1996, 800: 208–217.
  • Rasmussen T. E., Hallett J. W. Jr, Mathewu-Metzger R. L., Richardson D. M., Gronzy J. J., Weyand C. M. Genetic risk factor in inflammatory abdominal aortic aneurysms: polymorphic residue 70 in the HLA-DRb1 gene as a key genetic element. J Vasc Surg, 1997, 25: 356–64.
  • Rasmussen T. E., Hallett J. W. Jr, Tazelaar H. D., Miller V. M., Schulte S., O’Falllon W. M., Weyand C. M. Human leukocyte antigen class ii immune response genes, female gender, and cigarette smoking as risk and modulating factors in abdominal aortic aneurysms. J Vasc Surg, 2002, 35 (5): 988–93.
  • Hirose H., Takagi M., Miyagawa N., Hashiyada H., Noguchi M., Tada S., Tamane K., Kugimiya T., Tilson M. D. Genetic risk factor for abdominal aortic aneurysm: HLA-DR2 (15), A Japanese Study. J Vascular Surgery, 1998, 27: 500–503.
  • Hansson G. K., Jonasson S., Seifert P. S. Immune mechanisms in atherosclerosis. Arteriosclerosis, 1989, 9: 567–78.
  • Cid M. C., Campo E., Erilla G., Palacin A., Vilaseca J., Villalta J. et al. Immunohistochemical analysis of lymphoid and macrophage cell subsets and their immunologic activation markers in temporal arteritis: influence of corticosteroid treatment. Arthritis Rheum, 1989, 32: 884–93.
  • Juvonen J., Juvonen T., Saikku P. et al. Demonstration of Chlamydia pneumoniae in the walls of abdominal aortic aneurysms. J Vasc Surg, 1997, 25: 499.
  • Tanaka S., Komori K., Okadome K., Sugimachi K., Mori R. Detection of active cytomegalovirus infection in inflammatory aortic aneurysms with RNA polymerase chain reaction. J Vasc Surg, 1994, 20: 235–43.
  • Boyle J. R., McDermott E., Thompson M. M. et al. Doxycycline inhibits elastin degradation and reduces metalloproteinase activity in a model of aneurysmal disease. J Vasc Surg, 1998, 27: 354.
  • Ozsvath K. J., Hirose H., Xia S., Tilson M. D. Molecular mimicry in human aortic aneurysmal diseases. Ann N Y Acad Sci, 1996, 800: 288.
  • Tilson M. D. Similarities of an autoantigen in aneurysmal disease of the human abdominal aorta to a 36-kDA microfibril- associated bovine aortic glycoprotein. Biochem Biophys Res Commun, 1995, 213: 40–3.
  • Ozsvath K. J., Hirose H., Xia S., Chew D., Knowetgen J. 3rd, Tilson M. D. Expression of two novel recombinant proteins from aortic adventitia (kappafibs) sharing amino acid sequences with cytomegalovirus. J Surg Res, 1997, 69 (2): 277–82.
  • Ibid.
  • Kuivaniemi H., Watton S. J., Price S. J., Zhu Y., Gatalica Z., Tromp G. Candidate Genes for Abdominal Aortic Aneurysms. Ann N Y Acad Sci, 1996, 800: 186–197.
  • Ibid.
  • Watson J. B., Margulies J. E. Differential cDNA screening strategies to identify novel stage-specific proteins in the developing mammalian brain. Dev Neurosci, 1993, 15 (2): 77–86.
  • Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257 (5072): 967–971.
  • Kuivaniemi H., Watton S. J., Price S. J., Zhu Y., Gatalica Z., Tromp G. op cit., 186–197.
  • Yajima N., Masuda M., Mizyazaki M., Nakajima N., Chien S., SHYY J. Y. oxidative stress is involved in the development of experimental abdominal aortic aneurysm: A study of the transcription profile with complementary DNA microarray. J Vasc Surg, 2002, 36: 379–85.
  • Borromeo J. R., Koshy N., Park W. M., Xia S., Hardy K., Tilson M. D. Regional distribution in the mouse of proteins homologous to artery-specific antigenic proteins (ASAPs). J Surg Res, 1999, 85 (2): 217–24.
  • Chew D. K., Knoetgen J. 3rd, Xia S., Gaetz H. P., Tilson M. D. Regional distribution in human of a novel aortic collagen- associated microfibrillar protein. Exp Mol Pathol, 1999, 66 (1): 59–65.
  • Bhatti A. F., Ewing D. R., Jordan T. P. et. al. Role of Collagen Type XI in the Pathogenesis of the Abdominal Aortic Aneurysm. JACS. forthcoming 2002.
  • Carmeliet P., Moons L., Collen D. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet, 1997, 17: 439.
  • Ibid.
  • Armstrong P. J., Johanning J. M., Calton W. C. Jr, et al. Differential gene expression in human abdominal aorta: aneurysmal versus occlusive disease. J Vasc Surg, 2002, 35 (2): 346–55.
  • Pyo R., Lee J. K., Shipley J. M. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest, 2000, 105: 1641–49.
  • Gertz S. D., Kurgan S., Eisenberg D. Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo. J Clin Invest, 1988, 81: 649–656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.