225
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The involvement of liquid crystals in multichannel implanted neurostimulators, hearing and ENT infections, and cancers

, &
Pages 316-332 | Received 19 Oct 2018, Accepted 26 Nov 2018, Published online: 29 Apr 2019

References

  • Bouligand Y. On twisted architecture in arthropodes cuticules. C R Acad Sci. 1965;261:3665–3668.
  • Bouligand Y. Liquid crystalline order, in biological materials. LC Order in Biological Materials_Yves Bouligand. 1978;262–294.
  • Livolant F, Bouligand Y. Double helical arrangement of spread dinoflagellate chromosomes. Chromosoma. 1980;80:97–118.
  • Chouard CH, Mac Leod P. Letter: rehabilitation of total deafness. Trial of cochlear implantation with multiple electrodes. Nouv Presse Med. 1973;2:2958.
  • Chouard CH, MacLeod P. Implantation of multiple intracochlear electrodes for rehabilitation of total deafness: preliminary report. Laryngoscope. 1976;86:1743–1751.
  • Chouard CH, Mac Leod P, Meyer B, Pialoux P, et al. Surgically implanted electronic apparatus (ETC) for the rehabilitation of total deafness and deaf-mutism. Ann Otolaryngol Chir Cervicofac. 1977;94:353–363.
  • http://recorlsa.online.fr/implantcochleaire/historicfrancaisenanglais.html (accessed: 6.9.18).
  • Chouard CH, Fugain C, Meyer B, et al. Long-term results of the multichannel cochlear implant. Ann N Y Acad Sci. 1983;405:387–411.
  • http://recorlsa.online.fr/essaibacapdfavril14/bacapdf/9-BrevetBertin85-13528-1985.pdf (accessed: 6.9.18).
  • Chouard CH. The 2013 Lasker-DeBakey Clinical Medicine Research Award and cochlear implants: France unjustly overlooked…! Eur Ann Otorhinolaryngol Head Neck Dis. 2014;131:79–80.
  • Chouard CH. The early days of the multi channel cochlear implant: efforts and achievement in France. Hear Res. 2015;322:47–51.
  • Chouard CH. A fine anniversary: September 22, 2016 - 40 years of multichannel cochlear implantation. Eur Ann Otorhinolaryngol Head Neck Dis. UK. 2016;133:225.
  • De Gennes PG. The physics of liquid crystal. 1st ed. Oxford University Press; 1993.
  • Léger L. Pierre-Gilles de Gennes et l’aventure de la matière molle. UMR 8502 Laboratoire de Physique Des Solides, CNRS. Orsay: Université Paris-Sud 11; 2007. p. 7–10.
  • Nozières P, Prost J. La Vie et l'OEuvre Scientifique de Pierre-Gilles de Gennes et l'aventure de la matière molle. and the soft matter aventure. 2007 Notice: 9 pages. http://www.academiesciences.fr/archivage_site/academie/membre/notice_DeGennes.pdf (accesed: 22.08.18)
  • Lehn JM. Toward complex matter: supramolecular chemistry and self-organization. PNAS. 2002;99:4763–4768.
  • Binot C, Chouard CH. Neurodegenerative diseases, infectious pathologies and liquid crystals: hypothesis of a common information vector involving a multidisciplinary approach. Rev Neurol. 2018;174:540–554.
  • Binot C, Sadoc JF, Chouard CH. Oncogenesis, lipids rafts and liquid crystals: a nanoscopic supplementary field for applied researches and a new hope of advances in cancer. Heliyon. 2018;4:e00687.
  • Neuman AK, Itano MS, Jacobson K. Understanding lipid rafts and other related membrane domains. Cell Biol Physiol. 2010;2:31.
  • Jacobson K, Mouritsen OG, Anderson RGW. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol. 2007;9:7–14.
  • Mitov M. Sensible matter; foams, gels, liquid crstals and other miracles. Paris; 2010; p. 189.
  • Coste V. Raft domain in unilamellar vesicles. Available from: https://tel.archives-ouvertes.fr/tel-00116250/document [accessed 13.07.17].
  • Gobeaux F. Type 1 dense collagen phases. https://tel.archives-ouvertes.fr/tel-00337402v1 [accessed on 13.07.17]. Paris VI: Université Pierre et Marie- Curie; 2007.
  • Charvolin J, Sadoc JF. Periodic systems of frustrated fluid films and « micellar » cubic structures in liquid crystals. J Phys France. 1988;49:521–526.
  • Charvolin J, Sadoc JF. A phyllotactic approach to the structure of collagen fibrils. Biophys Rev Lett. 2011;06:13–27.
  • Charvolin J. Prologue. In: Architectures de la Matière Molle. p 15. Paris: BELIN Edit; 2008. 201 p.
  • Sadoc JF, editor. Geometry in condensed matter physics, direction in condensed matter physics. 9. Singapore. World Scientific Publishing Co; 1990.
  • Sadoc JF, Mosseri R. Geometrical frustration. Cambridge University Press; 1999.
  • Charvolin J. La Confusion spontanée. In: Architectures de la Matière Molle. p 24. Paris: BELIN Edit; 2008. 201 p. ISBN 978-2-7011-4623-2
  • Charvolin J. Les films des molécules amphiphiles. In: Architectures de la Matière Molle. p. 37 & seq. Paris: BELIN Edit; 2008. 201 p.
  • Staneva G. Heterogeneous membrane dynamic. https://tel.archives-ouvertes.fr/tel-00007282v1/document (accessed 13.07.17). ParisVI: Université Pierre et Marie-Curie; 2004.
  • Allain JM. Biological membranes instability. Thesis de PhD in Physical Sciences, specialization: particle fields eres matter. Université Paris VII: HAL Idtel-00011333; 2006. Implications biologiques.
  • Papachristou DJ, Papachroni KK, Basdra EK, et al. Signaling networks and transcription factors regulating mechanotransduction in bone. Bioessays. 2009;31:794–804.
  • Burkholder TJ. Mechanotransduction in skeletal muscle. Front Biosci. 2007;12:174–191.
  • Colclasure JC, Holt JR. Transduction and adaptation in sensory hair cells of the mammalian vestibular system. Gravit Space Biol Bull. 2003;16:61–70.
  • Ciuman RR. Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease. J Laryngol Otol. 2011;125:991–1003.
  • Legendre K, Petit C, El-Amraoui A. La cellule ciliée externe de la cochlée des mammifères: un amplificateur aux propriétés exceptionnelles. Med Sci (Paris). 2009;25:117–120.
  • Gold T, Hearing. II. The physical basis of the action of the cochlea. Royal Soc Biol Sci. 1948;135:482–498.
  • Hakizimana P, William E, Brownell WE, et al. Sound-induced length changes in outer hair cell stereocilia. Nat Commun. 2012;3:1094–1110.
  • Weitzel EK, Tasker R, Brownell WE. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior. J Acoust Soc Am. 2003;114:1462.
  • Brownell WE. What is electromotility? -The history of its discovery and its relevance to acoustics. Acoust Today 2017;13:20–27.
  • Vigier S. Dense collagen fibrillary matrice. Available from: https://www.tel.arc45hives-ouvertes.fr/tel-00574654v1 (accessed on 13.07.17).
  • (a) Etournay R, Lepelletier L, de Monvel JB. Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape. Development. 2010;137:1373–1383. (b) Zheng J, Shen W, He DZ, et al. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000;405:149–155.
  • Yoshida A, Yamamoto N, Kinoshita M, et al. Localization of septin proteins in the mouse cochlea. Hear Res. 2012;289:40–51.
  • Mavrakis M, Azou-Gros Y, Tsai FC, et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol. 2014;16:322–334.
  • Caberlotto E, Michel V, Foucher I, et al. Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proc Natl Acad Sci USA. 2011;108:5825–5830.
  • Duquesne N. Cellular Signaling and Formation of Protic Complexes During the Stretching of New Rat Cardiomyocytes es. Thèse de Doctorat en Biochimie, biologie Cellulaire et Moléculaire. Université Paris-Est Créteil; 2008. p. 140.
  • Bourgine P, Lesne A. Morphogenesis: Origin Of Forms. Belin, Paris; 2011. p. 352. ISBN 978-2-7011-4471-9.
  • Bahloul A, Michel V, Hardelin JP, et al. Cadherin- 23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Gen. 2010;19:3557–3565.
  • Yandrapalli N. Lubart Q, Tanwar HS, et al. Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P2/Cholesterol nanoclusters. Sci Rep. 2016;6. [Article number 39332]
  • Muriaux D, Favard C. Rôle Des Lipides Dans L’établissement de Domaines Membranaires Lors de L’assemblage de Virus ARN Enveloppés. 2016.
  • Mitov M. Les cristaux liquides ferro-électriques: rudiments; 2016 http://www.cemes.fr/IMG/pdf/ reprint_bup.pdf.
  • Sung B. Kim MH. Liquid-crystalline nanoarchitectures for tissue engineering. Beilstein J Nanotechnol. 2018;9:205–215.
  • Striccoli M. Photolithography based on nanocrystal: surface chemistry of all-inorganic nanomaterials enables three-dimensional patterning. Science. 2017;357:353–354.
  • Martiel L. Sagalowicz L, Mezzenga R. Phospholipid-based nonlamellar mesophases for delivery systems: bridging the gap between empirical and rational design. Adv Colloid Interface Sci 2009;14:1.
  • Choisy C. Veinous catheter and biofilms. Bull Acad Natle Méd. 2011;195:1105–1120.
  • Maquart FX. Extracellular matrix: A major partner in healing wounds. Bull Acad Natle Méd. 2015;199:1199–1209.
  • Head BP, Patel HH, Insel PA. Interaction of membranes lipid raft with the cytoskeleton: impact on signaling and Function. Biochim Biophysis Acta. 2014;1838:532–545.
  • Tresset G. Microscopic compartimentation and pseudo-viral particules. Thesis de Solid Physics. Univ Paris-Sud; 2013. Hal id: 008-48365
  • Ozenne V. Characterization of proteins intrinsically disordered by nuclear magnetic resonance. 25 Oct 3013. Thèse Sc. Physiques de l’École doctorale de physique de Grenoble.; Hal id: 00870515
  • Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. K Curr Opin Virol. 2014;4:24–31.
  • Florin L, Lang T. Tetraspanin assemblies in virus infection. Front Immunol. 2018;9:1140.
  • Finnen RL, Erickson KD, Chen XS, et al. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol. 2003;77:4818–4826.
  • Uversky VN, Roman A, Oldfield CJ, et al. Protein intrinsic disorder and human papillomavirus: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res. 2006;8:1829–1842.
  • Wang LW, Roden RB. L2, the minor capsid protein of papillomavirus. Mutat Res. 2017;772:13–22.
  • Dahamanes S, Rbinstein E, Milhiet PE. Viruses and tetraspanins: lessons from single molecule approaches. Viruses. 2014;6:1992–2011.
  • Endow SA. Force generation by kinesin and myosin cytoskeletal motor protein. J Cell Sci. 2013;126:9–19.
  • Scheffer KD, Berditchevski F, Florin L. The Tetraspanin CD51in Papillomavirus infection. Viruses. 2014;18:893–908.
  • Lieber D, Lang T, et al. Tetraspanins in infections by human cytomegalo- and papillomaviruses. 2014. Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
  • Jouannet S. ADAM10 membranous compartmentalization and NOTCH signalisation. Thèse de Biochimie. 26 nv 2016. Univ Paris-Sud; Hal id: 01-403463
  • Gao T, Blackwell R, Matthew A, Glaser MA, et al. Multiscale modeling and simulation of microtubule–motor-protein assemblies. Phys Rev. 2015; E 92:062709.
  • Zhang L, Wu J, Ling MT, et al. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer. 2015;14:87.
  • Denley A, Gymnopoulos M, Kang S, et al. Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol Cancer Res. 2009;7:1132–1138.
  • Surviladze Z, Sterk RT, DeHaro SA, et al. Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol. 2013;87:2508–2517.
  • Pujals A, PGaulard P, Wiels J. Inserm U955; Institut Gustave Roussy. Villejuif: Université Paris-Sud; 2013. Ropriétés oncogeniques du virus d’Epstein-Barr ar pathologie malignes assosiées (Oncogenic properties of the Epstein-Barr virus and associated malignancies). AP-HP Hop Henri Mondor Créteil; CNRS UMR 8126-Correspondances en onco-theranostic- Vol 2 Avril-mai
  • Kawauchi K, Ogasawara T, Yasuyama M, et al. of the PI3K/Akt/mTOR signaling pathway in hemathologic malignancies. Anticancer Agents Med Chem. 2009; 9(9):1024–38.
  • Li Y, Jia S, Liu H, et al. Characterization of hair cell-like cells converted from supporting cells after notch inhibition in cultures of the organ of corti from neonatal gerbils. Front Cell Neurosci. 2018.
  • DeCamp SJ. Dynamics of Active Nematic Liquid Crystals. 2016; Thesis (Ph.D. Brandeis University.Abstracts International, Volume: 78-03(E), Section: B.; 178 p ISBN: 9781369128871
  • Oza AU, Dunkel J. Antipolar order of topological defects in active liquid crystals Ordre. New J Phys. 2016;18:12.
  • Jullicher F, Kruse K, Prost J, et al. Active behavior of the cytoskeleton. Phys Rep. 2007;449:3–28.
  • Thomas DD, Kast D, Korman VL. Site-direct spectroscopic probes of actomyosin structural dynamics. Annu Rev Biophys. 2009;38:347–369.
  • Fernandes O, Merhi M, Raza A, et al. Role of Epstein-barr virus in the pathogenesis of head and neck cancers and its potential as an immunotherapeutic target. Front Oncol. 2018;8:257.
  • Fothergill T, McMillan NJ. Papillomavirus virus-like particles activate the PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. Virology. 2006;352:319–328.
  • Sandos G, Diaz M, Torres NV. Lipid raft size and lipid mobility in non-raft domains increase during aging and are exacerbated in APP/PS1 mice model of Alzheimer's disease. Predictions from an agent-based mathematical model. Front Physiol. 2016.
  • Masi L, Viel E, Curtit E, et al. Targeting the RAS signlaing pathway in cancer. Bull du Cancer. 2011;98–9:119–128.
  • Ouk TS. Role of LMP-1 proteine in Epstein-Barr virus. Thèse Siences de la Vie et de la Santé. Université de Limoges; 2008.
  • Fernandes Q, Merhi M, Rza A, et al. Role du virus d’Eptein-Barr dans la pathogenèse des cancers de la tête et du cou et son potentiel comme cible immunothérapeutique. Front Oncol. 2018;8:257.
  • Li HP, Chang YS. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci. 2003;10:490–504.
  • Farnoud AM, Toledo AM, Benach JL, et al. Ordered membrane domain-forming properties of the lipids of Borrelia burgdorferi. Biophys J. 2016;111:2666–2675.
  • Huang Z, Toledo AM, LaRocca TJ, Coleman JL, et al. Les lipides de cholesterol dee Borellia burgdorferi forment des radeaux lipidiques et sont nécessaires pour le mécanisme bactéricide d’in anticorps indépendant du complement. Cell Host Microbe. 2010;8:331–342.
  • Jameson T, Crowley JT, Cusack BJ, et al. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe. 2010;8:331–342.
  • Genoud N. Maladies à Prion: la peoteines saine se lie à la forme pathogène. Med Sci (Paris). 2003;19:1195–1196.
  • Farnoud AM, Toledo AM, Konopka JB, et al. Raft-like membrane domains in pathogenic microorganisms. Curr Top Membr. 2015;75:233–268.
  • Lehn JM, Collège de France; Paris: juin 2011. Perspectives en Chimie: moléculaire, supra-moléculaire, adaptative. La Lettre du Collège de france N° 31; pp. 3–4. URL: http://letttre-cdf.revues.org/1172ISSN1628-2329.
  • Stevenson CL, Bennett DB, Lechuga-Ballesteros D. Pharmaceutical liquid crystals: the relevance of partially ordered systems. J Pharm Sci. 2005;94:1861–1880.
  • Bunjes H, Rades T. Thermotropic liquid crystalline drugs. J Pharm Pharmacol. 2005;57:807–816.
  • Fukushi Y, Yoshino H, Ishikawa J, et al. Synthesis and anticancer properties of phenyl benzoate derivatives possessing a terminal hydroxyl group. J Mater Chem B. 2014;2:1335–1343.
  • Schmid F, Dolezel S, Lenz O, et al. On ripples and rafts: curvature induced nanoscale structures in lipid membranes. J Phys Conf. 2014;487:1.
  • Wilson W. Biological tissue can behave like a liquid crystal. Phys Today. 2017;70:19–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.