4,301
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Signal processing & audio processors

&
Pages 106-134 | Received 13 Dec 2020, Accepted 06 Jan 2021, Published online: 03 Apr 2021

References

  • Wight D, Batteau W. The role of pinna in human localization. Proc R Soc Lond B Biol Sci. 1967;168:158–180.
  • Chung K, McKibben N. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants. J Am Acad Audiol. 2011;22(9):586–600.
  • Ruggero MA, Temchin AN. Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. J Assoc Res Otolaryngol. 2007;8(2):153–166.
  • Gregan MJ, Nelson PB, Oxenham AJ. Behavioral estimates of basilar-membrane compression: additivity of forward masking in noise-masked normal-hearing listeners. J Acoust Soc Am. 2011;130(5):2835–2844.
  • Verschooten E, Robles L, Joris P. Assessment of the limits of neural phase-locking using mass potentials. J Neurosci. 2015;35(5):2255–2268.
  • Wilson BS, Finley CC, Lawson DT, et al. Better speech recognition with cochlear implants. Nature. 1991;352(6332):236–238.
  • Tyler RS, Moore BCJ, Kuk FK. Performance of some of the better cochlear-implant patients. J Speech Hear Res. 1989;32(4):887–911.
  • Hochmair-Desoyer IJ, Hochmair ES. Comparative results with the BTE- and the body-worn MED-EL processors. Advances in Cochlear Implants. Paper presented at Proceedings of the 3rd International Cochlear Implant Conference. Innsbruck, Austria: Manz, Wien; 1993. ISBN 3-85094-305-4.
  • Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res. 2008;242(1–2):3–21.
  • Helms J, Müller J, Schön F, et al. Evaluation of performance with the COMBI40 cochlear implant in adults: a multicentric clinical study. ORL J Otorhinolaryngol Relat Spec. 1997;59(1):23–35.
  • Helms J, Müller J, Schön F, et al. Comparison of the TEMPO + ear-level speech processor and the cis pro + body-worn processor in adult MED-EL cochlear implant users. ORL J Otorhinolaryngol Relat Spec. 2001;63(1):31–40.
  • Joon Moon II, Hwa Hong S. What is temporal fine structure and why is it important? Korean J Audiol. 2014;18(1):1–7.
  • Verschooten E, Shamma S, Oxenham AJ, et al. The upper frequency limit for the use of phase locking to code temporal fine structure in humans: a compilation of viewpoints. Hear Res. 2019;377:109–121.
  • Arnoldner C, Riss D, Brunner M, et al. Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol. 2007;127(12):1298–1303.
  • Vermeire K, Kleine Punte A, Van de Heyning P. Better speech recognition in noise with the fine structure processing coding strategy. ORL. 2010;72(6):305–311.
  • Kleine Punte A, De Bodt M, Van de Heyning P. Long-term improvement of speech perception with the fine structure processing coding strategy in cochlear implants. ORL J Otorhinolaryngol Relat Spec. 2014;76(1):36–43.
  • Lorens A, Zgoda M, Obrycka A, et al. Fine structure processing improves speech perception as well as objective and subjective benefits in pediatric MED-EL COMBI 40+ users. Int J Pediatr Otorhinolaryngol. 2010;74(12):1372–1378.
  • Müller J, Brill S, Hagen R, et al. Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users. ORL J Otorhinolaryngol Relat Spec. 2012;74(4):185–198.
  • Chen X, Liu B, Liu S, et al. Cochlear implants with fine structure processing improve speech and tone perception in Mandarin-speaking adults. Acta Otolaryngol. 2013;133(7):733–738.
  • Krenmayr A, Qi B, Liu B, et al. Development of a Mandarin tone identification test: sensitivity index d' as a performance measure for individual tones. Int J Audiol. 2011;50(3):155–163.
  • Tavora-Vieira D, Rajan GP. Assessment of fine structure processing strategies in unilaterally deafened cochlear implants. Int J Otlaryngol Head and Neck Surg. 2014;3:6.
  • Riss D, Hamsavi JS, Blineder M, et al. FS4, FS4-p and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. Ear Hear. 2014;35(6):272–281.
  • Stöbich B, Zierhofer CM, Hochmair ES. Influence of automatic gain control parameter settings on speech understanding of cochlear implant users employing the continuous interleaved sampling strategy. Ear Hear. 1999;20(2):104–116.
  • Haumann S, Lenarz T, Büchner A. Speech perception with cochlear implants as measured using a roving-level adaptive test method. ORL J Otorhinolaryngol Relat Spec. 2010;72(6):312–318.
  • Mertens G, Hofkens A, Punte AK, et al. Hearing performance in single-sided deaf cochlear implant users after upgrade to a single-unit speech processor. Otol Neurotol. 2015;36(1):51–60.
  • Dazert S, Thomas JP, Büchner A, et al. Off the ear with no loss in speech understanding: comparing the RONDO and the OPUS 2 cochlear implant audio processors. Eur Arch Otorhinolaryngol. 2017;274(3):1391–1395.
  • Weissgerber T, Stöver T, Baumann U. Speech perception in noise: impact of directional microphones in users of combined electric-acoustic stimulation. PLoS One. 2019;14(3):e0213251.
  • Dorman MF, Natale S, Loiselle L. Speech understanding and sound source localization by cochlear implant listeners using a pinna-effect imitating microphone and an adaptive beamformer. J Am Acad Audiol. 2018;29(3):197–205.
  • Fischer T, Schmidt C, Kompis M, et al. Pinna-imitating microphone directionality improves sound localization and discrimination in bilateral cochlear implant users. Ear Hear. 2020;42(1):214–222.
  • Hagen R, Radeloff A, Stark T, et al. Microphone directionality and wind noise reduction enhance speech perception in users of the MED-EL SONNET audio processor. Cochlear Implants Int. 2020;21(1):53–65.
  • Hardy M. The length of the organ of corti in man. Am J Anat. 1938;62(2):291–311.
  • Landsberger DM, Vermeire K, Claes A, et al. Qualities of single electrode stimulation as a function of rate and place of stimulation with a cochlear implant. Ear Hear. 2016;37(3):e149–e159.
  • Schatzer R, Katrien V, Visser D, et al. Electric-acoustic pitch comparisons in single-sided deaf cochlear implant users: frequency-place functions and rate pitch. Hear Res. 2014;309:26–35.
  • Blamey PJ, Dooley GJ, Parisi ES, et al. Pitch comparisons of acoustically and electrically evoked auditory sensations. Hear Res. 1996;99(1–2):139–150.
  • Rader T, Döge J, Adel Y, et al. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hear Res. 2016;339:94–103.
  • Escude B, James C, Deguine O, et al. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol. 2006;11(1):27–33.
  • Alexiades G, Dhanasingh A, Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol. 2015;36(5):904–907.
  • Schürzig D, Timm ME, Batsoulis C, et al. A novel method for clinical cochlear duct length estimation toward patient-specific cochlear implant selection. OTO Open. 2018;2(4):2473974X18800238.
  • Stefanescu EH, Motoi S. Selection of the appropriate cochlear electrode array using a specifically developed research software application. J Laryngol Otol. 2018;132(6):544–549.
  • Canfarotta MW, Dillon MT, Buss E, et al. Frequency-to-place mismatch: characterizing variability and the influence on speech perception outcomes in cochlear implant recipients. Ear Hear. 2020;41(5):1349–1361.
  • Dillon MT, Buss E, Anderson ML, et al. Cochlear implantation in cases of unilateral hearing loss: initial localization abilities. Ear Hear. 2017;38(5):611–619.
  • Zirn S, Arndt S, Aschendorff A, et al. Interaural stimulation timing in single sided deaf cochlear implant users. Hear Res. 2015;328:148–156.
  • Seebacher J, Franke-Trieger A, Weichbold V, et al. Improved interaural timing of acoustic nerve stimulation affects sound localization in single-sided deaf cochlear implant users. Hear Res. 2019;371:19–27.
  • Bahmer A, Polak M, Baumann U. Recording of electrically evoked auditory brainstem responses after electrical stimulation with biphasic, triphasic and precision triphasic pulses. Hear Res. 2010;259(1–2):75–85.
  • Ahn JH, Oh SH, Chung JW, et al. Facial nerve stimulation after cochlear implantation according to types of Nucleus 24-channel electrode arrays. Acta Otolaryngol. 2009;129(6):588–591.
  • Braun K, Walker K, Sürth W, et al. Triphasic pulses in cochlear implant patients with facial nerve stimulation. Otol Neurotol. 2019;40(10):1268–1277.
  • Alhabib S, Abdelsamad Y, Yousef M, et al. Performance of cochlear implant recipients fitted with triphasic pulse patterns. Eur Arch Otorhinolaryngol. 2020 Sep 26. doi: 10.1007/s00405-020-06382-0.
  • Alzhrani G, Halawani R, Basodan S, et al. Investigating facial nerve stimulation after cochlear implantation in adult and pediatric recipients. Laryngoscope. 2020;131(2):374–379.