162
Views
0
CrossRef citations to date
0
Altmetric
Middle ear

Assessment of middle ear structure and function with optical coherence tomography

, , , , & ORCID Icon
Pages 558-562 | Received 17 Mar 2023, Accepted 01 Jun 2023, Published online: 27 Jun 2023

References

  • Murthy, R.K., S. Haji, K. Sambhav, S. Grover, and K.V. Chalam, Clinical applications of spectral domain optical coherence tomography in retinal diseases. Biomed J. 2016;39(2):107–120. doi: 10.1016/j.bj.2016.04.003.
  • Pitris, C., K.T. Saunders, J.G. Fujimoto, and M.E. Brezinski, High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study. Arch Otolaryngol Head Neck Surg. 2001;127(6):637–642. doi: 10.1001/archotol.127.6.637.
  • Tan, H.E.I., P.L. Santa Maria, P. Wijesinghe, et al., Optical coherence tomography of the tympanic membrane and middle ear: a review. Otolaryngol Head Neck Surg. 2018;159(3):424–438. doi: 10.1177/0194599818775711.
  • MacDougall, D., J. Farrell, J. Brown, M. Bance, and R. Adamson, Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics. Biomed Opt Express. 2016;7(11):4621–4635. doi: 10.1364/BOE.7.004621.
  • Cho, N.H., S.H. Lee, W. Jung, J.H. Jang, and J. Kim, Optical coherence tomography for the diagnosis and evaluation of human otitis media. J Korean Med Sci. 2015;30(3):328–335. doi: 10.3346/jkms.2015.30.3.328.
  • Monroy, G.L., R.L. Shelton, R.M. Nolan, et al., Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media. Laryngoscope. 2015;125(8):E276–E282. doi: 10.1002/lary.25141.
  • Choma, M.A., A.K. Ellerbee, C. Yang, T.L. Creazzo, and J.A. Izatt, Spectral-domain phase microscopy. Opt Lett. 2005;30(10):1162–1164. doi: 10.1364/ol.30.001162.
  • Meenderink, S.W.F. and W. Dong, Organ of corti vibrations are dominated by longitudinal motion in vivo. Commun Biol. 2022;5(1):1285. doi: 10.1038/s42003-022-04234-7.
  • Meenderink, S.W.F., X. Lin, B.H. Park, and W. Dong, Sound induced vibrations deform the organ of corti complex in the low-frequency apical region of the gerbil cochlea for normal hearing: sound induced vibrations deform the organ of corti complex. J Assoc Res Otolaryngol. 2022;23(5):579–591. doi: 10.1007/s10162-022-00856-0.
  • MacDougall, D., L. Morrison, C. Morrison, et al., Optical coherence tomography doppler vibrometry measurement of stapes vibration in patients with stapes fixation and normal controls. Otol Neurotol. 2019;40(4):e349–e355. doi: 10.1097/MAO.0000000000002193.
  • Dong, W., Y. Tian, X. Gao, and T.T. Jung, Middle-ear sound transmission under normal, damaged, repaired, and reconstructed conditions. Otol Neurotol. 2017;38(4):577–584. doi: 10.1097/MAO.0000000000001330.
  • Rosowski, J.J., J.T. Cheng, M.E. Ravicz, et al., Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz. Hear Res. 2009;253(1–2):83–96. doi: 10.1016/j.heares.2009.03.010.
  • Tonndorf, J. and S.M. Khanna, Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am. 1972;52(4):1221–1233. doi: 10.1121/1.1913236.
  • Cheng, J.T., M. Hamade, S.N. Merchant, et al., Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am. 2013;133(2):918–937. doi: 10.1121/1.4773263.
  • Landry, T.G., J.W. Rainsbury, R.B. Adamson, M.L. Bance, and J.A. Brown, Real-time imaging of in-vitro human middle ear using high frequency ultrasound. Hear Res. 2015;326:1–7. doi: 10.1016/j.heares.2015.03.009.
  • Lui, C.G., W. Kim, J.B. Dewey, et al., In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device. Biomed Opt Express. 2021;12(8):5196–5213. doi: 10.1364/BOE.430935.
  • Hubler, Z., N.D. Shemonski, R.L. Shelton, et al., Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography. Quant Imaging Med Surg. 2015;5(1):69–77.
  • Van der Jeught, S., J.J. Dirckx, J.R. Aerts, et al., Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography. J Assoc Res Otolaryngol. 2013;14(4):483–494. doi: 10.1007/s10162-013-0394-z.
  • Khan, R., B. Gul, S. Khan, H. Nisar, and I. Ahmad, Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis Photodyn Ther. 2021;33:102192. doi: 10.1016/j.pdpdt.2021.102192.
  • Pawlowski, M.E., S. Shrestha, J. Park, et al., Miniature, minimally invasive, tunable endoscope for investigation of the middle ear. Biomed Opt Express. 2015;6(6):2246–2257. doi: 10.1364/BOE.6.002246.
  • Heermann, R., C. Hauger, P.R. Issing, and T. Lenarz, Application of optical coherence tomography (OCT) in middle ear surgery. Laryngorhinootologie. 2002;81(6):400–405. doi: 10.1055/s-2002-32213.
  • Just, T., E. Lankenau, G. Huttmann, and H.W. Pau, Optical coherence tomography of the oval window niche. J Laryngol Otol. 2009;123(6): 603–608. doi: 10.1017/S0022215109004381.
  • Burkhardt, A., L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography. J Biophotonics. 2014;7(6): 434–441. doi: 10.1002/jbio.201200186.
  • Cai, L., G. Stomackin, N.M. Perez, et al., Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission. Hear Res. 2019;384:107813. doi: 10.1016/j.heares.2019.107813.
  • Stomackin, G., S. Kidd, T.T. Jung, G.K. Martin, and W. Dong, Effects of tympanic membrane perforation on middle ear transmission in gerbil. Hear Res, 2019;373:48–58. doi: 10.1016/j.heares.2018.12.005.
  • Remenschneider, A.K., S. Lookabaugh, A. Aliphas, et al., Otologic outcomes after blast injury: the Boston Marathon experience. Otol Neurotol. 2014;35(10):1825–1834. doi: 10.1097/MAO.0000000000000616.
  • Cheng, J.T., A.A. Aarnisalo, E. Harrington, et al., Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res. 2010;263(1–2):66–77. doi: 10.1016/j.heares.2009.12.024.
  • Goode, R.L., M. Killion, K. Nakamura, and S. Nishihara, New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol. 1994;15(2):145–154.
  • de La Rochefoucauld, O., P. Kachroo and E.S. Olson, Ossicular motion related to middle ear transmission delay in gerbil. Hear Res. 2010;270(1–2):158–172. doi: 10.1016/j.heares.2010.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.