990
Views
0
CrossRef citations to date
0
Altmetric
Audiology

Compensation in neuro-system related to age-related hearing loss

, , , &
Pages 30-34 | Received 07 Dec 2023, Accepted 10 Dec 2023, Published online: 24 Jan 2024

References

  • Wilson BS, Tucci DL, Merson MH, et al. Global hearing health care: new findings and perspectives. Lancet. 2017; Dec 2390(10111):2503–2515. doi:10.1016/S0140-6736(17)31073-5.
  • Flood LM. SCHUKNECHT’S PATHOLOGY of the EAR, 3rd edn. S merchant, J nadol. McGraw-Hill education (UK), 2010 ISBN 978 1 60795 030 1 pp 960 price 202.39. J Laryngol Otol. 2013;127(3):329–329. doi:10.1017/S0022215112003064.
  • Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015; Dec330(Pt B):191–199. doi:10.1016/j.heares.2015.02.009.
  • Fernandez KA, Jeffers P, Lall K, et al. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears. J Neurosci. 2015;35(19):7509–7520. doi:10.1523/JNEUROSCI.5138-14.2015.
  • Bao J, Ohlemiller KK. Age-related loss of spiral ganglion neurons. Hear Res. 2010; Jun 1264(1-2):93–97. doi:10.1016/j.heares.2009.10.009.
  • Caspary DM, Ling L, Turner JG, et al. Inhibitory neurotransmission, plasticity and aging in the mammalian Central auditory system. J Exp Biol. 2008; Jun211(Pt 11):1781–1791. doi:10.1242/jeb.013581.
  • Walton JP. Timing is everything: temporal processing deficits in the aged auditory brainstem. Hear Res. 2010; Jun 1264(1–2):63–69. doi:10.1016/j.heares.2010.03.002.
  • Schatteman TA, Hughes LF, Caspary DM. Aged-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience. 2008; Jun 12154(1):329–337. doi:10.1016/j.neuroscience.2008.02.025.
  • Aravindakshan P, Kujawa SG. Synaptopathy in the aging cochlea: characterizing early-neural deficits in auditory temporal envelope processing. J Neurosci. 2018;38(32):7108–7119. doi:10.1523/JNEUROSCI.3240-17.2018.
  • Lai J, Bartlett EL. Masking differentially affects envelope-following responses in young and aged animals. Neuroscience. 2018;386:150–165. S0306452218304159-. doi:10.1016/j.neuroscience.2018.06.004.
  • Stebbings KA, Choi HW, Ravindra A, et al. Ageing‐related changes in GABAergic inhibition in mouse auditory cortex, measured using in vitro flavoprotein autofluorescence imaging. J Physiol. 2016;594(1):207–21. doi:10.1113/JP271221.
  • Presacco A, Simon JZ, Anderson S. Speech-in-noise representation in the aging midbrain and cortex: effects of hearing loss. PLoS One. 2019;14(3):e0213899. doi:10.1371/journal.pone.0213899.
  • Tomasi D, Volkow ND. Aging and functional brain networks. Mol Psychiatry. 2012; May17(5):471–471. 549-58. doi:10.1038/mp.2012.27.
  • Bidelman GM, Mahmud MS, Yeasin M, et al. Age-related hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal-ventral pathway for speech. Brain Struct Funct. 2019; Nov224(8):2661–2676. doi:10.1007/s00429-019-01922-9.
  • Puschmann S, Thiel CM. Changed crossmodal functional connectivity in older adults with hearing loss. Cortex. 2017;86:109–122. doi:10.1016/j.cortex.2016.10.014.
  • Husain FT, Schmidt SA. Using resting state functional connectivity to unravel networks of tinnitus. Hear Res. 2014;307(1):153–162. doi:10.1016/j.heares.2013.07.010.
  • Vaden KI, Kuchinsky SE, Ahlstrom JB, et al. Cingulo-Opercular function during word recognition in noise for older adults with hearing loss. Exp Aging Res. 2016;42(1):67–82. doi:10.1080/0361073X.2016.1108784.
  • Power JD, Petersen SE. Control-related systems in the human brain. Curr Opin Neurobiol. 2013;23(2):223–228. doi:10.1016/j.conb.2012.12.009.
  • Campbell J, Sharma A. Cross-Modal Re-Organization in adults with early stage hearing loss. PLoS One. 2014;9(2):e90594. doi:10.1371/journal.pone.0090594.
  • Du Y, Buchsbaum BR, Grady CL, et al. Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nat Commun. 2016;7(1):12241. doi:10.1038/ncomms12241.
  • Eckert MA, Kamdar NV, Chang CE, et al. A cross-modal system linking primary auditory and visual cortices: evidence from intrinsic fMRI connectivity analysis. Hum Brain Mapp. 2008; Jul29(7):848–857. doi:10.1002/hbm.20560.
  • Peelle JE. Listening effort: how the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear Hear. 2018; Mar/Apr39(2):204–214. doi:10.1097/AUD.0000000000000494.
  • Peelle JE, Troiani V, Wingfield A, et al. Neural processing during older adults’ comprehension of spoken sentences: age differences in resource allocation and connectivity. Cereb Cortex. 2010; Apr20(4):773–782. doi:10.1093/cercor/bhp142.
  • Belkhiria C, Vergara RC, Martín S, et al. Cingulate cortex atrophy is associated with hearing loss in presbycusis with cochlear amplifier DysfunctionData_sheet_1.PDF. Front Aging Neurosci. 2019;11:97. doi:10.3389/fnagi.2019.00097.
  • Fitzhugh MC, Hemesath A, Schaefer SY, et al. Functional connectivity of heschl’s gyrus associated with age-related hearing loss: a resting-state fMRI study. Front Psychol. 2019;10:2485. doi:10.3389/fpsyg.2019.02485.
  • Fortunato S, Forli F, Guglielmi V, et al. A review of new insights on the association between hearing loss and cognitive decline in ageing. Acta Otorhinolaryngol Ital. 2016;36(3):155–166. doi:10.14639/0392-100X-993.
  • Sergeyenko Y, Lall K, Liberman MC, et al. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013; Aug 2133(34):13686–13694. doi:10.1523/JNEUROSCI.1783-13.2013.
  • Tyler RS, Summerfield AQ. Cochlear implantation: relationships with research on auditory deprivation and acclimatization. Ear Hear. 1996; Jun17(3 Suppl):38s–50s. doi:10.1097/00003446-199617031-00005.
  • Willott JF. Physiological plasticity in the auditory system and its possible relevance to hearing aid use, deprivation effects, and acclimatization. Ear Hear. 1996; Jun17(3 Suppl):66s–77s. doi:10.1097/00003446-199617031-00007.
  • Noble W, Gatehouse S. Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the speech, spatial, and qualities of hearing scale (SSQ). Int J Audiol. 2006; Mar45(3):172–181. doi:10.1080/14992020500376933.
  • Karawani H, Jenkins K, Anderson S. Neural and behavioral changes after the use of hearing aids. Clin Neurophysiol. 2018; Jun129(6):1254–1267. doi:10.1016/j.clinph.2018.03.024.
  • Dunn CC, Tyler RS, Oakley S, et al. Comparison of speech recognition and localization performance in bilateral and unilateral cochlear implant users matched on duration of deafness and age at implantation. Ear Hear. 2008; Jun29(3):352–359. doi:10.1097/AUD.0b013e318167b870.
  • Seeber BU, Baumann U, Fastl H. Localization ability with bimodal hearing aids and bilateral cochlear implants. J Acoust Soc Am. 2004; Sep116(3):1698–1709. doi:10.1121/1.1776192.
  • Ching TY, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear. 2004; Feb25(1):9–21. doi:10.1097/01.AUD.0000111261.84611.C8.
  • Kitterick PT, Smith SN, Lucas L. Hearing instruments for unilateral severe-to-Profound sensorineural hearing loss in adults: a systematic review and Meta-Analysis. Ear Hear. 2016; Sep-Oct37(5):495–507. doi:10.1097/AUD.0000000000000313.
  • Silman S, Gelfand SA, Silverman CA. Late-onset auditory deprivation: effects of monaural versus binaural hearing aids. J Acoust Soc Am. 1984; Nov76(5):1357–1362. doi:10.1121/1.391451.
  • Neuman AC. Late-onset auditory deprivation: a review of past research and an assessment of future research needs. Ear Hear. 1996; Jun17(3 Suppl):3s–13s. doi:10.1097/00003446-199617031-00002.
  • Cisneros-Franco JM, Ouellet L, Kamal B, et al. A brain without brakes: reduced inhibition is associated with enhanced but dysregulated plasticity in the aged rat auditory cortex. eNeuro. 2018; Jul-Aug5(4):ENEURO.0051-18.2018. doi:10.1523/ENEURO.0051-18.2018.