103
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Molecular Mechanisms of Vestibular Compensation in the Central Vestibular System - Review

Pages 19-27 | Published online: 08 Jul 2009

References

  • Precht W, Dieringer N. Neuronal events paralleling functional recovery (compensation) following periph-eral vestibular lesions. In: Berthoz A, Melville-Jones G, eds. Adaptive mechanism in gaze control: facts and theories. Amsterdam: Elsevier, 1985: 251–68.
  • Smith PF, Curthoys IS. Mechanism of recovery fol-lowing unilateral labyrinthectomy: a review. Brain Res Rev 1989; 14: 155–80.
  • Llinas R, Walton K. Vestibular compensation: a dis-tributed property of the central nervous system. In: Wilson VJ, Asanuma H, eds. Integration in the ner-vous system. Tokyo: Igaku Shoin, 1979: 145–66.
  • Haddad GM, Friendlich AR, Robinson DA. Com-pensation of nystagmus after VIII the nerve lesions in vestibulo-cerebellectomized cats. Brain Res 1977; 135: 192–6.
  • Courjon JH, Flandrin M, Jeanneod M, Schmid R. The role of the flocculus in vestibular compensation after hemilabyrinthectomy. Brain Res 1982; 239: 251–7.
  • Darlington CL, Flohr H, Smith PF. Molecular mech-anisms of brainstem plasticity. Mol Neurobiol 1991; 5: 355–68.
  • Kitahara T, Takeda N, Saika T, Kubo T, Kiyama H. Effects of MK801 on Fos expression in the rat brain-stem after unilateral labyrinthectomy. Brain Res 1995; 700: 182–90.
  • Bullitt E. Induction of c-fos like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493: 391–7.
  • Lee JH, Beitz AJ. The distribution of brain stem and spinal cord nuclei associated with different frequen-cies of electroacupuncture analgesia. Pain 1993; 52: 11–28.
  • Kitahara T, Saika T, Takeda N, Kubo T, Kiyama H. Changes in Fos and Jun expression after labyrinthec-tomy in the rat brainstem. Acta Otolaryngol 1995; Suppl 520: 401–4.
  • Smith PF, Curthoys IS. Neuronal activity in the ipsi-lateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 1988; 444: 308–19.
  • Kitahara T, Takeda N, Kubo T, Kiyama H. Role of the flocculus in the development of vestibular com-pensation: immunohistochemical studies with retro-grade tracing and flocculectomy using Fos expression as a marker in the rat brainstem. Neuroscience 1997; 76: 571–80.
  • Barmack NH, Baughman RW, Eckenstein FP, Shou-jaku H. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retro-grade and orthograde tracers. J Comp Neurol 1992; 317: 250–70.
  • McCabe BF, Ryu JH. Experiments of vestibular compensation. Laryngoscope 1969; 79: 1728–36.
  • Luneburg U, Flohr H. Possible role of NMDA re-ceptors in vestibular compensation. In: Elsner N, Roth G, eds. Brain-perception cognition. Stuttgart: Thieme, 1990: 178.
  • Smith PF, Darlington CL. The NMDA antagonist MK801 and CPP disrupt compensation for unilateral labyrinthectomy in the guinea pig. Neurosci Lett 1988; 94: 309–13.
  • de Waele C, Vibert N, Baudrimont M, Vidal PP. NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemi-labyrinthectomized guinea pig. Exp Brain Res 1990; 81: 125–33.
  • Sekiguchi M, Okamoto K, Sakai Y. NMDA recep-tors on Purkinje cell dendrites in guinea pig cerebel-lar slices. Brain Res 1987; 437: 402–6.
  • Ottersen OP, Laake JH, Storm-Mathisen J. Demon-stration of a releasable pool of glutamate in cerebel-lar mossy and parallel fibre terminals by means of light and electron microscopic immunocytochemistry. Arch Ital Biol 1990; 128: 111–25.
  • Petralia RS, Yokotani N, Wenthold RJ. Light and electron microscope distribution of the NMDA recep-tor subunit NMDAR1 in the rat nervous system us-ing a selective anti-peptide antibody. J Neurosci 1994; 14: 667–96.
  • Obata K, Takeda K. Release of GABA into the IVth ventricle induced by stimulation of the cat's cerebel-lum. J Neurochem 1969; 16: 1043–7.
  • Smith PF, Darlington CL. Neurochemical mechanism of recovery from peripheral vestibular lesions (vestibular compensation). Brain Res Rev 1991; 16: 117–33.
  • Precht W, Schwindt PC, Baker R. Removal of vestibular commissural inhibition by antagonists of GABA and glycine. Brain Res 1973; 62: 222–6.
  • Sekitani T, McCabe BF, Ryu JH. Drug effects on the medial vestibular nucleus. Arch Otolaryngol 1971; 93: 581–9.
  • McCabe BF, Sekitani T, Ryu JH. Drug effects on postlabyrinthectomy nystagmus. Arch Otolaryngol 1973; 98: 310–3.
  • Martin J, Gilchrist DPD, Smith PF, Darlington CL. Early diazepam treatment following unilateral labyrinthectomy does not impair vestibular compen-sation of spontaneous nystagmus in guinea pig. J Vestibular Res 1996; 6: 135–9.
  • Newman R, Winans SS. An experimental study of the ventral striatum of the golden hamster. I. Neu-ronal connections of the nucleus accumbens. J Comp Neurol 1980; 191: 167–92.
  • Smith PF, Curthoys IS. Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 1988; 444: 295–307.
  • Flugel G, Holm S, Flohr H. Physiological and clini-cal aspects. In: Moncada S, Feelisch M, Busse R, Higgs EA, eds. The Biology of Nitric Oxide. Lon-don: Portland Press, 1994: 381–7.
  • Kitahara T, Takeda N, Kubo T, Kiyama H. Role of the nitric oxide (NO)-mediated signalling in the rat bilateral floccular unipolar brush cells for vestibular compensation. Brain Res 1997; 765: 1–6.
  • Mugnaini E, Floris A. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cor-tex. J Comp Neurol 1994; 339: 174–80.
  • Rossi DJ, Alford S, Mugnaini E, Slater NT. Proper-ties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fibre-unipolar brush cell synapse. J Neurophysiol 1995; 74: 24–42.
  • Mugnaini E, Floris A, Wright-Goss M. Extraordi-nary synapses of the unipolar brush cell: an electron microscopic study in the rat cerebellum. Synapse 1994; 16: 284–311.
  • Shibuki K, Okada D. Endogenous nitric oxide re-lease required for long-term synaptic depression in the cerebellum. Nature 1991; 349: 326–8.
  • Daniel H, Hemart N, Jaillard D, Crepel F. Long-term depression requires nitric oxide and guanosine 3':5' cyclic monophosphate production in rat cerebel-lar Purkinje cells. Eur J Neurosci 1993; 5: 1079–82.
  • Nagao S, Ito M. Subdural application of hemoglobin to the cerebellum blocks vestibulo-ocular reflex adaptation. Neuroreport 1991; 2: 193–6.
  • Li J, Smith SS, McEllgott JG. Cerebellar nitric ox-ide is necessary for vestibulo-ocular reflex adapta-tion, a sensorimotor model of learning. J Neurophysiol 1995; 74: 489–94.
  • Garthwaite J, Garthwaite G, Palmer RM, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 1988; 172: 413–6.
  • Bredt DS, Snyder SH. Nitric oxide mediates gluta-mate linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 1989; 86: 9030–3.
  • Lin Y, Carpenter DO. Medial vestibular neurons are endogenous pacemakers whose discharge is modu-lated by neurotransmitters. Cell Mol Neurobiol 1993; 13: 601–13.
  • Lin Y, Carpenter DO. Direct excitatory opiate ef-fects mediated by non-synaptic actions on rat medial vestibular neurons. Eur J Pharmacol 1994; 262: 99–106.
  • Saika T, Takeda N, Kiyama H, Tohyama M, Mat-sunaga T. Changes in preproenkephalin mRNA after unilateral and bilateral labyrinthectomy in the rat medial vestibular nucleus. Mol Brain Res 1993; 19: 237–40.
  • Sonnenberg JL, Rauscher III FJ, Morgan JI, Curran T. Regulation of Proenkephalin by Fos and Jun. Science 1989; 246: 1622–5.
  • Kitahara T, Takeda N, Kiyama H, Kubo T. An im-plication of protein phosphatase 2A-13 in the rat flocculus for lesion-induced vestibularplasticity. Acta Otolaryngol 1998; 118: 685–91.
  • Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1994; 4: 389–99.
  • Wang LY, Orser BA, Brautigan DL, MacDonald JF. Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatase 1 and 2A. Nature 1994; 369: 230–2.
  • Roche KW, Tingley WG, Hunganir RL. Glutamate receptor phosphorylation and synaptic plasticity. Curr Opin Neurobiol 1994; 4: 383–8.
  • Goto MM, Romero GG, Balaban CD. Transient changes in flocculonodular lobe protein kinase C ex-pression during vestibular compensation. J Neurosci 1997; 17: 4367–81.
  • Barmack NH, Baughman RW, Eckenstein FP, Shou-jaku H. Influence of unilateral labyrinthectomy on expression of protein kinase C in a cerebellar-vestibular pathway in rat. Soc Neurosci Abstr 1995; 21: 467.4.
  • Kitahara T, Takeda N, Uno A, Kubo T, Kiyama H. Unilateral labyrinthectomy downregulates gluta-mate receptor 62 expression in the rat vestibulocere-bellum. Mol Brain Res (In press).
  • Araki K, Meguro H, Kushiya E, Takayama C, In-oue Y, Mishina M. Selective expression of the gluta-mate receptor channel 62 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 1993; 197: 1267–76.
  • Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, et al. The rat M and 62 subunits ex-tend the excitatory amino acid receptor family. FEBS Lett 1993; 315: 318–22.
  • Mayat E, Petralia RS, Wang YX, Wenthold RJ. Im-munoprecipitation, immunoblotting, and immunocy-tochemistry studies suggest that glutamate receptor subunits form novel postsynaptic receptor complexes. J Neurosci 1995; 15: 2533–46.
  • Yamazaki M, Araki K, Shibata A, Mishina M. Molecular cloning of cDNA encoding a novel mem-ber of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 1992; 183: 886–92.
  • Dieringer N, Precht W. Mechanism of compensation for vestibular deficits in the frog. II. Modifications of the inhibitory pathways. Exp Brain Res 1979; 36: 329–41.
  • Flohr H, Bienhold H, Abeln W, Macskovics I. Con-cepts of vestibular compensation. In: Flohr H, Precht W, eds. Lesion-induced neuronal plasticity in sensorimotor systems. Amsterdam: Springer, 1981: 153–72.
  • Smith PF, Darlington CL, Curthoys IS. The effect of visual deprivation on vestibular compensation in the guinea pig. Brain Res 1986; 364: 195–8.
  • de Waele C, Graf W, Josset P, Vidal PP. A radiological analysis of the postural syndromes following hemi-labyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp Brain Res 1989; 77: 166–82.
  • Galiana HL, Flohr H, Melville-Jones G. A reevaluation of intervestibular nuclear coupling: its role in vestibular compensation. J Neurophysiol 1984; 51: 242–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.