1,295
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Algebraic Matroids in Action

, &
Pages 199-216 | Received 21 Sep 2018, Accepted 02 Jul 2019, Published online: 24 Feb 2020

REFERENCES

  • Abhyankar, S. S. (2004). Polynomials and power series. In: Christensen, C., Sathaye, A., Sundaram, G., Bajaj, C., eds. Algebra, Arithmetic and Geometry with Applications: Papers from Shreeram S. Abhyankar’s 70th Birthday Conference. New York: Springer, pp. 783–784. DOI: 10.1007/978-3-642-18487-1_49.
  • Bolker, E. D., Roth, B. (1980). When is a bipartite graph a rigid framework? Pac. J. Math. 90(1): 27–44. DOI: 10.2140/pjm.1980.90.27.
  • Bollen, G. P., Draisma, J., Pendavingh, R. (2018). Algebraic matroids and Frobenius flocks. Adv. Math. 323: 688–719. DOI: 10.1016/j.aim.2017.11.006.
  • Borcea, C. (2002). Point configurations and Cayley-Menger varieties. arxiv.org/abs/math/0207110
  • Borcea, C., Streinu, I. (2004). The number of embeddings of minimally rigid graphs. Discrete Comput. Geom. 31(2): 287–303. DOI: 10.1007/s00454-003-2902-0.
  • Brylawski, T., Kelly, D. (1980). Matroids and Combinatorial Geometries. Chapel Hill, NC: University of North Carolina, Department of Mathematics.
  • Cartwright, D. (2018). Construction of the Lindström valuation of an algebraic extension. J. Combin. Theory Ser. A. 157: 389–401. DOI: 10.1016/j.jcta.2018.03.003.
  • Cox, D. A., Little, J., O’Shea, D. (2015). Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Cham: Springer. DOI: 10.1007/978-3-319-16721-3.
  • Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B. (2009). Toric dynamical systems. J. Symb. Comput. 44(11): 1551–1565. DOI: 10.1016/j.jsc.2008.08.006.
  • Dress, A., Lovász, L. (1987). On some combinatorial properties of algebraic matroids. Combinatorica. 7(1): 39–48. DOI: 10.1007/BF02579199.
  • Eisenbud, D. (1995). Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. New York: Springer-Verlag. DOI: 10.1007/978-1-4612-5350-1
  • Eppstein, D. (2012). Wikipedia entry. commons.wikimedia.org/wiki/File:Vamos_matroid.svg
  • Gatermann, K. (2001). Counting stable solutions of sparse polynomial systems in chemistry. In: Green, E. L. Hosten, S., Laubenbacher, R. C., Powers, V. A., eds. Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering (South Hadley, MA, 2000). Contemporary Mathematics, Vol. 286. Providence, RI: American Mathematical Society, pp. 53–69. DOI: 10.1090/conm/286/04754.
  • Gross, E., Harrington, H. A., Rosen, Z., Sturmfels, B. (2016). Algebraic systems biology: A case study for the Wnt pathway. Bull. Math. Biol. 78(1): 21–51. DOI: 10.1007/s11538-015-0125-1.
  • Gross, E., Sullivant, S. (2018). The maximum likelihood threshold of a graph. Bernoulli. 24(1): 386–407. DOI: 10.3150/16-BEJ881.
  • Ingleton, A. W. (1971). Representation of matroids. In: Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969). London: Academic Press, pp. 149–167.
  • Ingleton, A. W., Main, R. A. (1975). Non-algebraic matroids exist. Bull. Lond. Math. Soc. 7: 144–146. DOI: 10.1112/blms/7.2.144.
  • Király, F. J., Theran, L. (2013). Error-minimizing estimates and universal entry-wise error bounds for low-rank matrix completion. In: Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. Q., eds. Advances in Neural Information Processing Systems, Vol. 26. Red Hook, NY: Curran Associates, Inc., pp. 2364–2372.
  • Király, F. J., Theran, L., Tomioka, R. (2015). The algebraic combinatorial approach for low-rank matrix completion. J. Mach. Learn. Res. 16: 1391–1436.
  • Király, F. J., Rosen, Z., Theran, L. (2013). Algebraic matroids with graph symmetry. arxiv.org/abs/1312.3777
  • Kung, J. P. S. (1986). A Source Book in Matroid Theory. Boston, MA: Birkhäuser. DOI: 10.1007/978-1-4684-9199-9.
  • Laman, G. (1970). On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4(4): 331–340. DOI: 10.1007/BF01534980.
  • Lindström, B. (1983). The non-Pappus matroid is algebraic. Ars Combin. 16(B): 95–96.
  • Lindström, B. (1984). A simple nonalgebraic matroid of rank three. Util. Math. 25: 95–97.
  • Lindström, B. (1987). A class of non-algebraic matroids of rank three. Geom. Dedicata. 23(3): 255–258. doi.org/ DOI: 10.1007/BF00181312.
  • Lindström, B. (1988). A generalization of the Ingleton–Main lemma and a class of nonalgebraic matroids. Combinatorica. 8(1): 87–90. DOI: 10.1007/BF02122556.
  • Lovász, L., Yemini, Y. (1982). On generic rigidity in the plane. SIAM J. Algebr. Discrete Methods. 3(1): 91–98. DOI: 10.1137/0603009.
  • MacLane, S. (1936). Some interpretations of abstract linear dependence in terms of projective geometry. Amer. J. Math. 58(1): 236–240. DOI: 10.2307/2371070.
  • Maxwell, J. C. (1864). On the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Doublin Philos. Mag. J. Sci. 27(182): 294–299. DOI: 10.1080/14786446408643668.
  • Menger, K. (1931). New foundation of Euclidean geometry. Amer. J. Math. 53(4): 721–745. DOI: 10.2307/2371222.
  • Nelson, P. (2018). Almost all matroids are nonrepresentable. Bull. Lond. Math. Soc. 50(2): 245–248. DOI: 10.1112/blms.12141.
  • Oxley, J. (2011). Matroid Theory. Oxford Graduate Texts in Mathematics, Vol. 21, 2nd ed. Oxford: Oxford Univ. Press. DOI: 10.1093/acprof:oso/9780198566946.001.0001.
  • Pollaczek-Geiringer, H. (1927). Über die gliederung ebener fachwerke. ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech. 7(1): 58–72. DOI: 10.1002/zamm.19270070107.
  • Rosen, Z. (2014). Computing algebraic matroids. arxiv.org/abs/1403.8148
  • Saliola, F., Whiteley, W. (2007). Some notes on the equivalence of first-order rigidity in various geometries. arxiv.org/abs/0709.3354
  • Schoenberg, I. J. (1935). Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. (2). 36(3): 724–732. DOI: 10.2307/1968654.
  • Singer, A., Cucuringu, M. (2009/10). Uniqueness of low-rank matrix completion by rigidity theory. SIAM J. Matrix Anal. Appl. 31(4): 1621–1641. DOI: 10.1137/090750688.
  • Sitharam, M., Gao, H. (2010). Characterizing graphs with convex and connected Cayley configuration spaces. Discrete Comput. Geom. 43(3): 594–625. DOI: 10.1007/s00454-009-9160-8.
  • Sturmfels, B. (1996). Gröbner Bases and Convex Polytopes. Providence, RI: American Mathematical Society.
  • van der Waerden, B. L. (1943). Moderne Algebra. Parts I and II. New York: G. E. Stechert and Co.
  • Weil, A. (1946). Foundations of Algebraic Geometry. American Mathematical Society Colloquium Publications, Vol. 29. Providence, RI: American Mathematical Society.
  • Welsh, D. J. A. (1976). Matroid Theory. London, New York: Academic Press.
  • White, N. L., Whiteley, W. (1983). The algebraic geometry of stresses in frameworks. SIAM J. Algebr. Discrete Methods. 4(4): 481–511. DOI: 10.1137/0604049.
  • Whiteley, W. (1983). Cones, infinity and 1-story buildings. Struct. Topol. (8): 53–70.
  • Whitney, H. (1935). On the abstract properties of linear dependence. Amer. J. Math. 57(3): 509–533. DOI: 10.2307/2371182.
  • Young, G., Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika. 3(1): 19–22. DOI: 10.1007/BF02287916.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.