1,399
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Quasirandom Graphs and the Pantograph Equation

Pages 630-639 | Received 06 May 2020, Accepted 19 Jan 2021, Published online: 06 Aug 2021

References

  • Boas Jr., R. P. (1944). Functions of exponential type, II. Duke Math. J. 11(1): 17–22.
  • Chung, F. R. K., Graham, R. L., Wilson, R. M. (1989). Quasi-random graphs. Combinatorica. 9(4): 345–362.
  • Frieze, A., Karoński, M. (2015). Introduction to Random Graphs. Cambridge: Cambridge Univ. Press.
  • Griebel, T. (2017). The pantograph equation in quantum calculus. Master’s thesis. Missouri University of Science and Technology, Rolla, MO.
  • Han, H., Person, Y., Schacht, M. (2011). Note on forcing pairs. Proceeding of EuroComb 11, Electronic Notes in Discrete Mathematics. 38(1): 437–442.
  • Iserles, A. (1992). On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 4(1): 1–38.
  • Krivelevich, M., Sudakov, B. (2006). Pseudo-random graphs. In: Győri, E., Katona, O. H., Lovász, L. eds. More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, Vol. 15. Berlin: Springer-Verlag, pp. 199–262.
  • Kurtz., D. C. (1992). A Sufficient condition for all the roots of a polynomial to be real. Amer. Math. Monthly. 99(3): 259–263.
  • Levin, B. Ya. (1996). Lectures on Entire Functions. Translations of Mathematical Monographs, Vol. 150. Providence, RI: American Mathematical Society.
  • Liu, C. (2018). Basic theory of a kind of linear pantograph equations. arxiv.org/abs/1605.06734v4
  • Lovász, L. (2012). Large Networks and Graph Limits. Colloquium Publications, Vol. 60. Providence, RI: American Mathematical Society.
  • Mahler, K. (1940). On a special functional equation. J. London Math. Soc. 1(2): 115–123.
  • Mallows, C. L., Riordan, J. (1968). The inversion enumerator for labeled trees. Bull. Amer. Math. Soc. 74(1): 92–94.
  • Morris, G. R., Feldstein, A., Bowen, E. T. W. (1972). The Phragmén–Lindelöf principle and a class of functional differential equations. In: Weis, L., ed. Ordinary Differential Equations. 1971 NRL-Conference. New York: Academic Press, pp. 513–540.
  • Paley, R. E. A. C. (1933). On orthogonal matrices. J. Math. Phys. 12(1–4): 311–320.
  • Robinson, R. W. (1973). Counting labeled acyclic digraphs. In: Harary, F., ed. New Directions in the Theory of Graphs. New York: Academic Press, pp. 239–279.
  • Scott, A., Sokal, A. (2005). The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118(5/6): 1151–1261.
  • Skokan, J., Thoma, L. (2004). Bipartite subgraphs and quasi-randomness. Graphs Combin. 20(2): 255–262. DOI: 10.1007/s00373-004-0556-1.
  • Stein, E. M., Shakarchi, R. (2003). Complex Analysis. Princeton Lectures in Analysis, Vol. 2. Princeton, NJ: Princeton Univ. Press.
  • Szemerédi, E. (1975). On sets of integers containing no k elements in arithmetic progression. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica. 27: 199–245. DOI: 10.4064/aa-27-1-199-245.
  • Tao, T. C. (2007). The dichotomy between structure and randomness, arithmetic progression, and the primes. In: Sanz-Solé, Soria, J., Varona, J. L., Verdera, J., eds. Proceedings of the International Congress of Mathematicians, Madrid 2006, Vol. I. Zürich: European Math. Society, pp. 581–608.
  • Tutte, W. T. (1967). On dichromatic polynomials. J. Combin. Theory. 2: 301–320. DOI: 10.1016/S0021-9800(67)80032-2.
  • Wang, L., Zhang, C. (2018). Zeros of the deformed exponential function. Adv. Math. 332: 311–348. DOI: 10.1016/j.aim.2018.05.006.
  • West, D. (1988). Forcing sets for quasirandomness. faculty.math.illinois.edu/west/regs/quasiran.html