881
Views
84
CrossRef citations to date
0
Altmetric
Mini-Review

Functional One‐Dimensional Nanomaterials: Applications in Nanoscale Biosensors

, , , &
Pages 2067-2096 | Received 28 May 2007, Accepted 28 May 2007, Published online: 09 Nov 2007

References

  • Al‐Mawlawi , D. , Liu , C. Z. and Moskovits , M. 1994 . Nanowires formed in anodic oxide nanotemplates . J. Mater. Res. , 9 : 1014 – 1018 .
  • Andrews , R. , Jacques , D. , Rao , A. M. , Derbyshire , F. , Qian , D. , Fan , X. , Dickey , E. C. and Chen , J. 1999 . Continuous production of aligned carbon nanotubes: a step closer to commercial realization . Chem. Phys. Lett. , 303 : 467 – 474 .
  • Arnold , M. S. , Avouris , P. , Pan , Z. W. and Wang , Z. L. 2003 . Field‐effect transistors based on single semiconducting oxide nanobelts . J. Phys. Chem. B , 107 : 659 – 663 .
  • Arrigan , D. W.M. 2004 . Nanoelectrodes, nanoelectrode arrays, and their applications . Analyst , 129 : 1157 – 1165 .
  • Azamian , B. R. , Davis , J. J. , Coleman , K. S. , Bagshaw , C. B. and Green , M. L.H. 2002 . Bioelectrochemical single‐walled carbon nanotubes . J. Am. Chem. Soc. , 124 : 12664 – 12665 .
  • Baer , D. R. 2007 . Improving surface analysis methods for characterization of advanced materials by development of standards, reference data, and interlaboratory comparisons . Surf. Interface Anal. , 39 : 283 – 293 .
  • Baeumner , A. 2004 . Nanosensors identify pathogens in food . Food Technol. , 58 : 51 – 52 .
  • Baker , L. A. , Jin , P. and Martin , C. R. 2005 . Biomaterials and biotechnologies based on nanotube membranes . Crit. Rev. Solid State Mater. Sci. , 30 : 183 – 205 .
  • Baker , R. T.K. , Barber , M. A. , Harris , P. S. , Feates , F. S. and Waite , R. J. 1972 . Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene . J. Catal. , 26 : 51 – 62 .
  • Baker , S. E. , Cai , W. , Lasseter , T. L. , Weidkamp , K. P. and Hamers , R. J. 2002 . Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single‐wall carbon nanotubes: Synthesis and hybridization . Nano Lett. , 2 : 1413 – 1417 .
  • Balavoine , F. , Schultz , P. , Richard , C. , Mallouh , V. , Ebbesen , T. W. and Mioskowski , C. 1999 . Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew . Chem. Int. Ed. , 38 : 1912 – 1915 .
  • Bayley , H. and Martin , C. R. 2000 . Resistive pulse sensing from microbes to molecules . Chem. Rev. , 100 : 2575 – 2594 .
  • Bauer , L. A. , Birenbaum , N. S. and Meyer , G. J. 2004 . Biological applications of high aspect ratio nanoparticles . J. Mater. Chem. , 14 : 517 – 526 .
  • Baughman , R. H. , Zakhidov , A. A. and de Heer , W. A. 2002 . Carbon nanotubes—the route toward applications . Science , 297 : 787 – 792 .
  • Besteman , K. , Lee , J. , Wiertz , F. G.M. , Heering , H. A. and Dekker , C. 2003 . Enzyme coated carbon nanotubes as single molecule biosensors . Nano Lett. , 3 : 727 – 730 .
  • Bhattacharjee , Y. 2005 . New techniques aim to thwart terrorists . Science , 309 : 1810 – 1811 .
  • Birenbaum , N. S. , Lai , B. T. , Chen , C. S. , Reich , D. H. and Meyer , G. J. 2003 . Selective noncovalent adsorption of protein to bifunctional metallic nanowire surfaces . Langmuir , 19 : 9580 – 9582 .
  • Boussaad , S. , Tao , N. J. , Zhang , R. , Hopson , T. and Nagahara , L. A. 2003 . In situ detection of cytochrome c adsorption with single walled carbon nanotube device . Chem. Commun. , : 1502 – 1503 .
  • Bradley , K. , Briman , M. , Star , A. and Gruner , G. 2004 . Charged transfer from adsorbed proteins . Nano Lett. , 4 : 253 – 256 .
  • Brenner , S. S. and Sears , G. W. 1956 . Mechanism of whisker growth. III. Nature of growth sites . Acta Metall. , 4 : 268 – 270 .
  • Bright , F. V. , Betts , T. A. and Litwiler , K. S. 1990 . Regenerable fiber‐optic‐based immunosensor . Anal. Chem. , 62 : 1065 – 1069 .
  • Britto , P. J. , Santhanam , K. S.V. and Ajayan , P. M. 1996 . Carbon nanotube electrode for the oxidation of dopamine . Bioelectrochem. Bioenerg. , 41 : 121 – 125 .
  • Bustero , I. , Ainara , G. , Isabel , O. , Roberto , M. , Inés , R. and Amaya , A. 2006 . Control of the properties of carbon nanotubes synthesized by CVD for application in electrochemical biosensors . Microchim. Acta , 152 : 239 – 247 .
  • Campbell , J. K. , Sun , L. and Crooks , R. M. 1999 . Electrochemistry using single carbon nanotubes . J. Am. Chem. Soc. , 121 : 3779 – 3780 .
  • Carrero‐Sanchez , J. C. , Elias , A. L. , Mancilla , R. , Arrellin , G. , Terrones , H. , Laclette , J. P. and Terrones , M. 2006 . Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen . Nano Lett. , 6 : 1609 – 1616 .
  • Cattanach , K. , Kulkarni , R. D. , Kozlov , M. and Manohar , S. K. 2006 . Flexible carbon nanotube sensors for nerve agent simulants . Nanotechnology , 17 : 4123 – 4128 .
  • Che , J. , Cagin , T. and Goddard , W. A. III . 2000 . Thermal conductivity of carbon nanotubes . Nanotechnology , 11 : 65 – 69 .
  • Chen , Y. , Wang , X. , Erramilli , S. , Mohanty , P. and Kalinowski , A. 2006 . Silicon‐based nanoelectronic field‐effect pH sensor with local gate control . Appl. Phys. Lett. , 89 : 223512/1 – 223512/3 .
  • Chen , M. , Yu , H.‐W. , Chen , J.‐H. and Koo , H.‐S. 2007 . Effect of purification treatment on adsorption characteristics of carbon nanotubes . Diamond Relat. Mater. , 16 : 1110 – 1115 .
  • Chen , H. and Dong , S. 2007 . Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel‐derived ceramic–carbon nanotube nanocomposite film . Biosens. Bioelectron. , 22 : 1811 – 1815 .
  • Chen , R. J. , Zhang , Y. , Wang , D. and Dai , H. 2001 . Noncovalent sidewall functionalization of single‐walled carbon nanotubes for protein immobilization . J. Am. Chem. Soc. , 123 : 3838 – 3839 .
  • Chen , R. J. , Bangsaruntip , S. , Drouvalakis , K. A. , Kam , N. W.S. , Shim , M. , Li , Y. , Kim , W. , Utz , P. J. and Dai , H. 2003 . Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors . Proc. Natl. Acad. Sci. USA , 100 : 4984 – 4989 .
  • Chopra , N. and Hinds , B. J. 2004 . Catalytic size control of multiwalled carbon nanotube diameter in xylene chemical vapor deposition process . Inorg. Chim. Acta , 357 : 3920 – 3926 .
  • Chopra , N. , Kichambare , P. D. , Andrews , R. and Hinds , B. J. 2002 . Control of multiwalled carbon nanotube diameter by selective growth on the exposed edge of a thin film Multilayer Structure . Nano Lett. , 2 : 1177 – 1181 .
  • Chung , S.‐W. , Ginger , D. S. , Morales , M. W. , Zhang , Z. , Chandrasekhar , V. , Ratner , M. A. and Mirkin , C. A. 2005 . Top‐down meets bottom‐up: Dip‐pen nanolithography and DNA‐directed assembly of nanoscale electrical circuits. Small . 1 : 64 – 69 .
  • Correa‐Duarte , M. A. , Wagner , N. , Rojas‐Chapana , J. , Morsczeck , C. , Thie , M. and Giersig , M. 2004 . Fabrication and biocompatibility of carbon nanotube‐based 3D networks as scaffolds for cell seeding and growth . Nano Lett. , 4 : 2233 – 2236 .
  • Cui , D. and Gao , H. 2003 . Advance and prospect of bionanomaterials . Biotechnol. Progr. , 19 : 683 – 692 .
  • Cui , D. 2007 . Advances and prospects on biomolecules functionalized carbon nanotubes . J. Nanosci. Nanotech. , 7 : 1298 – 1314 .
  • Cui , Y. , Lauhon , L. J. , Gudiksen , M. S. , Wang , J. and Lieber , C. M. 2001 . Diameter‐controlled synthesis of single‐crystal silicon nanowires . Appl. Phys. Lett. , 78 : 2214 – 2216 .
  • Cui , Y. , Wei , Q. , Park , L. and Lieber , C. M. 2001 . Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species . Science , 293 : 1289 – 1292 .
  • Curtis , J. , Greenberg , M. , Kester , J. , Phillips , S. and Krieger , G. 2006 . Nanotechnology and nanotoxicology. A primer for clinicians . Toxicol. Rev. , 25 : 245 – 260 .
  • Curulli , A. , Cesaro , S. N. , Coppe , A. , Silvestri , C. and Palleschi , G. 2006 . Functionalization and dissolution of single‐walled carbon nanotubes by chemical‐physical and electrochemical treatments . Microchim. Acta , 152 : 225 – 232 .
  • Da Silva , L. B. , Fagan , S. B. and Mota , R. 2004 . Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules . Nano Lett. , 4 : 65 – 67 .
  • Dai , Z. R. , Pan , Z. W. and Wang , Z. L. 2003 . Novel nanostructures of functional oxides synthesized by thermal evaporation . Adv. Funct. Mater. , 13 : 9 – 24 .
  • Dayen , J.‐F. , Rumyantseva , A. , Ciornei , C. , Wade , T. L. , Wegrowe , J.‐E. , Pribat , D. and Sorin Cojocarn , C. 2007 . Electronic transport of silicon nanowires grown in porous Al2O3 membrane . Appl. Phys. Lett. , 90 : 173110/1 – 173110/3 .
  • Deo , R. P. , Wang , J. , Block , I. , Mulchandani , A. , Joshi , K. A. , Trojanowics , M. , Scholz , F. , Chen , W. and Lin , Y. 2005 . Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor . Anal. Chim. Acta , 530 : 185 – 189 .
  • Ding , Y. , Gao , P. X. and Wang , Z. L. 2004 . Catalyst‐nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO . J. Am. Chem. Soc. , 126 : 2066 – 2072 .
  • Donaldson , K. , Aitken , R. , Tran , L. , Stone , V. , Duffin , R. , Forrest , G. and Alexander , A. 2006 . Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety . Toxicol. Sci. , 92 : 5 – 22 .
  • Dressalhaus , M. S. , Dressalhaus , G. and Eklund , P. C. 1996 . Science of Fullerenes and Carbon Nanotubes New York : Academic Press .
  • Dressalhaus , M. , Dressalhaus , G. and Avouris , P. 2001 . Carbon nanotubes: Synthesis, Structures, Properties, and Applications Vol. 80 , New York : Springer .
  • Dwyer , C. , Guthold , M. , Falvo , M. , Washburn , S. , Superfine , R. and Erie , D. 2002 . DNA‐functionalized single‐walled carbon nanotubes . Nanotechnology , 13 : 601 – 604 .
  • Endo , M. 1988 . Grow Carbon Fibers in the Vapor Phase . Chemtech , 18 : 568 – 576 .
  • Fan , Y. , Chen , X. , Trigg , A. D. , Tung , C.‐H. , Kong , J. and Gao , Z. 2007 . Detection of microRNAs using target‐guided formation of conducting polymer nanowires in nanogaps . J. Am. Chem. Soc. , 129 : 5437 – 5443 .
  • Fond , A. M. , Birenbaum , N. S. , Felton , E. J. , Reich , D. H. and Meyer , G. J. 2007 . Preferential noncovalent immunoglobulin G adsorption onto hydrophobic segments of multi‐functional metallic nanowires . J. Photochem. Photobiol., A , 186 : 57 – 64 .
  • Fritzsche , W. and Taton , T. A. 2003 . Metal nanoparticles as labels for heterogeneous, chip‐based DNA detection . Nanotechnology , 14 : R63 – R73 .
  • Fuhrer , M. S. , Kim , B. M. , Durkop , T. and Brintlinger , T. 2002 . High mobility nanotube transistor memory . Nano Lett. , 2 : 755 – 759 .
  • Gao , M. , Dai , L. and Wallace , G. G. 2003 . Glucose sensors based on glucose‐oxidase‐containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes . Synth. Met. , 137 : 1393 – 1394 .
  • Garibaldi , S. , Brunelli , C. , Bavastrello , V. , Ghigliotti , G. and Nicolini , C. 2006 . Carbon nanotube biocompatibility with cardiac muscle cells . Nanotechnology , 17 : 391 – 397 .
  • Gavalas , V. G. , Andrews , R. , Bhattacharya , D. and Bachas , L. G. 2001 . Carbon nanotubes sol‐gel composite materials . Nano Lett. , 1 : 719 – 721 .
  • Gavalas , V. G. , Law , S. A. , Ball , J. C. , Andrews , R. and Bachas , L. G. 2004 . Carbon nanotube aqueous sol‐gel composites: enzyme‐friendly platforms for the development of stable biosensors . Anal. Biochem. , 329 : 247 – 252 .
  • Ghosh , S. , Teredesai , P. V. and Sood , A. K. 2002 . Electrochemical tuning and mechanical resilience of single‐wall carbon nanotubes . Pure Appl. Chem. , 74 : 1719 – 1730 .
  • Gindulyte , A. , Lipscomb , W. N. and Massa , L. 1998 . Proposed boron nanotubes . Inorg. Chem. , 37 : 6544 – 6545 .
  • Goerbitz , C. H. 2003 . Nanotubes from hydrophobic dipeptides: Pore size regulation through side chain substitution . New J. Chem. , 27 : 1789 – 1793 .
  • Gooding , J. J. , Wibowo , R. , Liu , J. , Yang , W. , Losic , D. , Orbons , S. , Mearns , F. J. , Shapter , J. G. and Hibbert , D. B. 2003 . Protein electrochemistry using aligned carbon nanotubes array . J. Am. Chem. Soc. , 125 : 9006 – 9007 .
  • Grobert , N. 2007 . Carbon nanotubes—Becoming clean . Mater. Today , 10 ( 1–2 ) : 28 – 35 .
  • Gruner , G. 2006 . Carbon nanotube transistors for biosensing applications: Organic thin‐film transistors as analytical and bioanalytical sensors . Anal. Bioanal. Chem. , 384 : 322 – 335 .
  • Guiseppi‐Elie , A. , Lei , C. and Baughman , R. H. 2002 . Direct electron transfer to glucose oxidase using carbon nanotubes . Nanotechnology , 13 : 559 – 564 .
  • Guo , Z. , Sadler , P. J. and Tsang , S. C. 1998 . Immobilization and visualisation of DNA and proteins on carbon nanotubes . Adv. Mater. , 10 : 701 – 703 .
  • Haes , A. J. , Stuart , D. A. , Van , D. and Richard , P. 2007 . Nanoscale optical sensors based on surface plasmon resonance . Nanotechnol. Biol. Med. , : 20/1 – 20/30 .
  • Hahm , J. and Lieber , C. M. 2004 . Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors . Nano Lett. , 4 : 51 – 54 .
  • Hauffe , K. 1965 . Oxidation of Metals New York : Plenum Press .
  • He , P. and Dai , L. 2004 . Aligned carbon nanotube–DNA electrochemical sensors . Chem. Commun. , : 348 – 349 .
  • He , P. , Li , S. and Dai , L. 2005 . DNA‐modified carbon nanotubes for self‐assembling and biosensing applications . Synth. Met. , 154 : 17 – 20 .
  • He , P. , Xu , Y. and Fang , Y. 2006 . Applications of carbon nanotubes in electrochemical DNA biosensors . Microchim. Acta , 152 : 175 – 186 .
  • Heeger , A. J. 2002 . Semiconducting and metallic polymers: the fourth and fifth generation of polymeric materials . Synth. met. , 125 : 23 – 42 .
  • Hinds , B. J. , Chopra , N. , Rantell , T. , Andrews , R. , Gavalas , V. G. and Bachas , L. G. 2004 . Aligned multiwalled carbon nanotube membranes . Science , 303 : 62 – 65 .
  • Hirsch , A. 2002 . Functionalization of single‐walled carbon nanotubes. Angew . Chem. Int. Ed. , 41 : 1853 – 1859 .
  • Holmes , J. D. , Johnston , K. P. , Doty , R. C. and Korgel , B. A. 2000 . Control of thickness and orientation of solution‐grown silicon nanowires . Science , 287 : 1471 – 1473 .
  • Holt , J. K. , Noy , A. , Huser , T. , Eaglesham , D. and Bakajin , O. 2004 . Fabrication of a carbon nanotube embedded silicon nitride membrane for studies of nanometer scale mass transport . Nano Lett. , 4 : 2245 – 2250 .
  • Holt , J. K. , Park , H. G. , Wang , Y. , Stadermann , M. , Artyukhin , A. B. , Grigoropoulos , C. P. , Noy , A. and Bakajin , O. 2006 . Fast mass transport through sub‐2‐nanometer carbon nanotubes . Science , 312 : 1034 – 1037 .
  • Hone , J. , Whitney , M. , Piskoti , C. and Zettl , A. 1999 . Thermal conductivity of single‐walled carbon nanotubes . Phys. Rev. B , 59 : R2514 – R2516 .
  • Huang , W. , Taylor , S. , Fu , K. , Zhang , D. , Hanks , T. W. , Rao , A. M. and Sun , Y. P. 2002 . Attaching proteins to carbon nanotubes via diimide activated amidation . Nano Lett. , 2 : 311 – 314 .
  • Hurst , S. J. , Payne , E. K. , Qin , L. and Mirkin , C. A. 2006 . Multisegmented one‐dimensional nanorods prepared by hard‐template synthetic methods. Angew . Chem. Int. Ed. , 45 : 2672 – 2692 .
  • Huynh , W. U. , Dittmer , J. J. and Alivisatos , A. P. 2002 . Hybrid nanorod‐polymer solar cells . Science , 295 : 2425 – 2427 .
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56 – 58 .
  • Ito , T. , Sun , L. and Crooks , R. M. 2003 . Electrochemical etching of individual multiwall carbon nanotubes . Electrochem. Solid‐State Lett. , 6 : C4 – C7 .
  • Ji , Q. , Iwaura , R. and Shimizu , T. 2004 . Controlling wall thickness of silica nanotubes within 4‐nm precision . Chem. Lett. , 33 : 504 – 505 .
  • Jiang , K. , Schadler , L. S. , Siegel , R. W. , Zhang , X. , Zhang , H. and Terrones , M. 2004 . Protein immobilization on carbon nanotubes via a two‐step process of diimide‐activated amidation . J. Mater. Chem. , 14 : 37 – 39 .
  • Kagan , V. E. , Bayir , H. and Shvedova , A. A. 2005 . Nanomedicine and nanotoxicology: Two sides of the same coin . Nanomedicine , 1 : 313 – 316 .
  • Kam , N. W.S. , Jessop , T. C. , Wendor , P. A. and Dai , H. 2004 . Nanotube molecular transporters: Internalization of carbon nanotube‐protein conjugates into mammalian cells . J. Am. Chem. Soc. , 126 : 6850 – 6851 .
  • Kane , R. S. and Stroock , A. D. 2007 . Nanobiotechnology: Protein‐nanomaterials interactions . Biotechnol. Progr. , 23 : 316 – 319 .
  • Kasili , P. M. , Cullum , B. M. , Griffin , G. D. and Vo‐Dinh , T. 2002 . Nanosensor for in vivo measurement of the carcinogen benzo[a]pyrene in a single cell . J. Nanosci. Nanotechnol. , 2 : 653 – 658 .
  • Kasili , P. M. and Vo‐Dinh , T. 2005 . Optical nanobiosensor for monitoring an apoptotic signaling process in a single living cell following photodynamic therapy . J. Nanosci. Nanotechnol. , 5 : 2057 – 2062 .
  • Kelley , S. O. 2007 . Nanowires for Biomolecular Sensing. Nanotechnology in Biology and Medicine Edited by: Vo‐Dinh , T. 6/1 – 6/7 . New York : CRC Press .
  • Kodambaka , S. , Tersoff , J. , Reuter , M. C. and Ross , F. M. 2007 . Germanium nanowire growth below the eutectic temperature . Science , 316 : 729 – 732 .
  • Koehne , J. , Li , J. , Cassell , A. M. , Chen , H. , Ye , Q. , Ng , H. T. , Han , J. and Meyyappan , M. 2004 . The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays . J. Mater. Chem. , 14 : 676 – 684 .
  • Kong , J. , Franklin , N. R. , Zhou , C. , Chapline , M. G. , Peng , S. , Cho , K. and Dai , H. 2000 . Nanotube molecular wires as chemical sensors . Science , 287 : 622 – 625 .
  • Krishnan , A. , Dujardin , E. and Ebbesen , T. W. 1998 . Young's modulus of single‐walled nanotubes . Phys. Rev. B , 58 : 14013 – 14019 .
  • Lam , C.‐W. , James , J. T. , McCluskey , R. , Arepalli , S. and Hunter , R. L. 2006 . A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks . Crit. Rev. Toxicol. , 36 : 189 – 217 .
  • Lao , C. , Li , Y. , Wong , C. P. and Wang , Z. L. 2007 . Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization . Nano Lett. , 7 : 1323 – 1328 .
  • Lew , K. K. and Redwing , J. M. 2003 . Growth characteristics of silicon nanowires synthesized by vapor‐liquid‐solid growth in nanoporous alumina templates . J. Cryst. Growth , 254 : 14 – 22 .
  • Lenihan , J. S. , Gavalas , V. G. , Wang , J. , Andrews , R. and Bachas , L. G. 2004 . Protein immobilization on carbon nanotubes through a molecular adapter . J. Nanosci. Nanotechnol. , 4 : 600 – 604 .
  • Li , C. , Lie , B. , Zhang , D. , Liu , X. , Han , S. , Tang , T. , Rouhanizadeh , M. , Hsiai , T. and Zhou , C. 2003 . Chemical gating of In2O3 nanowires by organic and biomolecules . App. Phys. Lett. , 83 : 4014 – 4016 .
  • Li , D. , Wang , Y. and Xia , Y. 2003 . Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays . Nano Lett. , 3 : 1167 – 1171 .
  • Li , J. and Chen , X. 2004 . Large‐scale and catalyst‐free synthesis of zinc nanotubes and nanowires . Solid State Commun. , 131 : 769 – 772 .
  • Li , J. , Chajara , K. , Lindgren , J. and Grennberg , H. 2007 . Rapid acid‐mediated purification of single‐walled carbon nanotubes with homogenization of bulk properties . J. Nanosci. Nanotechno. , 7 : 1525 – 1529 .
  • Li , Z. , Chen , Y. , Li , X. , Kamins , T. I. , Nauka , K. and Williams , R. S. 2004 . Sequence‐specific label‐free DNA sensors based on silicon nanowires . Nano Lett. , 4 : 245 – 247 .
  • Li , Z. , Rajendran , B. , Kamins , T. I. , Li , X. , Chen , Y. and Williams , R. S. 2005 . Silicon nanowires for sequence‐specific DNA sensing: device fabrication and simulation . Appl. Phys. A , 80 : 1257 – 1263 .
  • Lim , S. H. , Wei , J. , Lin , J. , Li , Q. and You , J. K. 2005 . A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion‐solubilized carbon nanotube electrode . Biosens. Bioelectron. , 20 : 2341 – 2346 .
  • Lin , Y. , Lu , F. , Tu , Y. and Ren , Z. F. 2004 . Glucose biosensors based on carbon nanotube nanoelectrode ensembles . Nano Lett. , 4 : 191 – 195 .
  • Linsky , J. P. , Paul , T. R. and Kenny , M. E. 1971 . Planar organosilicon polymers . J. Polym. Sci., Part A: Polym. Chem. , 9 ( 1 ) : 143 – 160 .
  • Liopo , A. V. , Stewart , M. P. , Hudson , J. , Tour , J. M. and Pappas , T. C. 2006 . Biocompatibility of native and functionalized single‐walled carbon nanotubes for neuronal interface . J. Nanosci. Nanotechnol. , 6 : 1365 – 1374 .
  • Lin , Y. , Elkin , T. , Taylor , S. , Gu , L. , Chen , B. , Veca , L. M. , Zhou , B. , Yang , H. , Brown , J. , Joseph , R. , Jones , E. , Jiang , X. and Sun , Y.‐P. 2006 . Preparation, characterization, and evaluation of immuno carbon nanotubes . Microchim. Acta , 152 : 249 – 254 .
  • Liu , H. , Kameoka , J. , Czaplewski , D. A. and Craighead , H. G. 2004 . Polymeric nanowire chemical sensor . Nano Lett. , 4 : 671 – 675 .
  • Liu , J. , Lin , Y. , Liang , L. , Voigt , J. A. , Huber , D. L. , Tian , Z. R. , Coker , E. , Mckenzie , B. and Mcdermott , M. J. 2003 . Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for oriented nanostructures . Chem. Eur. J. , 9 : 605 – 611 .
  • Luong , H. H.T. , Hrapovic , S. , Wang , D. , Bensebaa , F. and Simard , B. 2004 . Fabrication of multiwall carbon nanotube based electrochemical biosensors . Electroanalysis , 16 : 132 – 139 .
  • Luong , J. H.T. , Hrapovic , S. and Wang , D. 2005 . Multiwall carbon nanotube (MWCNT) based electrochemical biosensors for mediatorless detection of putrescine . Electroanalysis , 17 : 47 – 53 .
  • Luque , G. L. , Ferreyra , N. F. and Rivas , G. A. 2006 . Glucose biosensor based on the use of a carbon nanotube paste electrode modified with metallic particles . Microchim. Acta , 152 : 273 – 283 .
  • Ma , Y. , Zhang , J. , Zhang , G. and He , H. 2004 . Polyaniline nanowires on Si surfaces fabricated with DNA templates . J. Am.Chem. Soc. , 126 : 7097 – 7101 .
  • Martin , B. R. , Dermody , D. J. , Reiss , B. D. , Fang , M. , Lyon , L. A. , Natan , M. J. and Mallouk , T. E. 1999 . Orthogonal self‐assembly on colloidal gold‐platinum nanorods . Adv. Mater. , 11 : 1021 – 1025 .
  • Martin , C. R. 1996 . Membrane based synthesis of nanomaterials . Chem. Mater. , 8 : 1739 – 1746 .
  • Masciangioli , T. and Zhang , W.‐X. 2003 . Environmental technologies at the nanoscale . Environ. Sci. Technol. , 37 : 102A – 108A .
  • Mbindyo , J. K.N. , Reiss , B. D. , Martin , B. R. , Keating , C. D. , Natan , M. J. and Mallouk , T. E. 2001 . DNA‐directed assembly of gold nanowires on complementary surfaces . Adv. Mater. , 13 : 249 – 254 .
  • McAlpine , M. C. , Ahmad , H. , Wang , D. and Heath , J. R. 2007 . Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors . Nat. Mater. , 6 : 379 – 384 .
  • Meyyappan , M. 2004 . Carbon Nanotubes: Science and Applications Boca Raton, FL : CRC Press .
  • Merkoçi , A. 2006 . Carbon nanotubes in analytical sciences . Microchim. Acta , 152 : 157 – 174 .
  • Modi , A. , Koratkar , N. , Lass , E. , Wei , B. and Ajayan , P. M. 2003 . Miniaturized gas sensors using carbon nanotubes . Nature , 424 : 171 – 174 .
  • Motesharei , K. and Ghadiri , M. R. 1997 . Diffusion‐limited size‐selective ion sensing based on SAM‐supported peptide nanotubes . J. Am. Chem. Soc. , 119 : 11306 – 11312 .
  • Muller , J. , Huaux , F. , Moreau , N. , Misson , P. , Heilier , J. F. , Delos , M. , Arras , M. , Fonseca , A. , Nagy , J. B. and Lison , D. 2005 . Respiratory toxicity of multi‐wall carbon nanotubes . Toxicol. Appl. Pharmacol. , 207 : 221 – 231 .
  • Muller , J. , Huaux , F. , Moreau , N. , Misson , P. , Heilier , J.‐F. , Delos , M. , Arras , M. , Fonseca , A. , Nagy , J. B. and Lison , D. 2005 . Respiratory toxicity of multi‐wall carbon nanotubes . Toxicol. Appl. Pharmacol. , 207 : 221 – 231 .
  • Muller , J. , Huaux , F. and Lison , D. 2006 . Respiratory toxicity of carbon nanotubes: How worried should we be? . Carbon , 44 : 1048 – 1056 .
  • (accessed on: 06/13/2007). NanoMarkets LC. NanoMarkets LC. http://www.nanomarkets.net/press‐release12‐07‐04.htm (http://www.nanomarkets.net/press-release12-07-04.htm )
  • Nednoor , P. , Gavalas , V. G. , Chopra , N. , Hinds , B. J. and Bachas , L. G. 2007 . Carbon nanotube based biomimetic membranes: mimicking protein channels by phosphorylation . J. Mater. Chem. , 17 : 1755 – 1757 .
  • Niemeyer , C. M. 2003 . Functional hybrid devices of proteins and inorganic nanoparticles. Angew . Chem. Int. Ed. , 42 : 5796 – 5800 .
  • Niidome , Y. , Nishioka , K. , Kawasakib , H. and Yamada , S. 2003 . Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; Morphological changes depending on the growing processes . Chem. Commun. , : 2376 – 2377 .
  • Niidome , Y. , Takahashi , H. , Urakawa , S. , Nishioka , K. and Yamada , S. 2004 . Immobilization of gold nanorods on the glass substrate by the electrostatic interactions for localized plasmon sensing . Chem. Lett. , 33 : 454 – 455 .
  • Nguyen , C. V. , Delzeit , L. , Cassell , A. M. , Li , J. , Han , J. and Meyyappan , M. 2002 . Preparation of nucleic acid functionalized carbon nanotubes arrays . Nano Lett. , 2 : 1079 – 1081 .
  • Novak , J. P. , Snow , E. S. , Houser , E. J. , Park , D. , Stepnowski , J. L. and McGill , R. A. 2003 . Nerve agent detection using networks of single‐walled carbon nanotubes . Appl. Phys. Lett. , 83 : 4026 – 4028 .
  • O'Connell , M. J. 2006 . Carbon Nanotubes: Properties and Applications Boca Raton, FL : CRC Press .
  • Parikh , K. S. , Cattanach , K. , Rao , R. R. , Suh , D.‐S. , Wu , A. and Manohar , S. K. 2006 . Flexible vapour sensors using single walled carbon nanotubes . Sens. Actuators , 113 : 55 – 63 .
  • Patolsky , F. and Lieber , C. M. 2005 . Nanowire nanosensors . Mater. Today , 8 ( 4 ) : 1 – 9 .
  • Peng , S. and Cho , K. 2003 . Ab initio study of doped carbon nanotube sensors . Nano Lett. , 3 : 513 – 517 .
  • Ramanathan , K. , Bangar , M. A. , Yun , M. , Chen , W. , Mulchandani , A. and Myung , N. V. 2004 . Individually addressable conducting polymer nanowires array . Nano Lett. , 4 : 1237 – 1239 .
  • Ramanathan , K. , Bangar , M. A. , Yun , M. , Chen , W. , Myung , N. V. and Mulchandani , A. 2004 . Bioaffinity sensing using biologically‐functionalized conducting polymer nanowire . J. Am. Chem. Soc. , 127 : 496 – 497 .
  • Reiss , B. D. , Freeman , R. G. , Walton , I. D. , Norton , S. M. , Smith , P. C. , Stonas , W. G. , Keating , C. D. and Natan , M. J. 2002 . Electrochemical synthesis and optical readout of striped metal rods with submicron features . J. Electroanal. Chem. , 522 : 95 – 103 .
  • Robertson , J. 2007 . Growth of nanotubes for electronics . Mater. Today , 10 ( 1–2 ) : 36 – 43 .
  • Rodriguez , N. M. 1993 . A review of catalytically grown carbon nanofibers . J. Mater. Res. , 8 : 3233 – 3250 .
  • Saleh , O. A. and Sohn , L. L. 2003 . An artificial nanopore for molecular sensing . Nano Lett. , 3 : 37 – 38 .
  • Salaita , K. , Wang , Y. , Fragala , J. , Vega , R. A. , Liu , C. and Mirkin , C. A. 2006 . Massively parallel dip‐pen nanolithography with 55000‐pen two‐dimensional arrays. Angew . Chem. Int. Ed. , 45 : 7220 – 7223 .
  • Sanchez‐Quesada , J. , Ghadiri , M. R. , Bayley , H. and Braha , O. 2000 . Cyclic peptides as molecular adapters for a pore‐forming protein . J. Am. Chem. Soc. , 122 : 11757 – 11766 .
  • Santos , D. H. , Garcia , M. B.G. and Garcia , A. C. 2002 . Metal‐nanoparticles based electroanalysis . Electroanalysis , 14 : 1225 – 1235 .
  • Sau , T. P. and Murphy , C. J. 2004 . Seeded high yield synthesis of short Au nanorods in aqueous solution . Langmuir , 20 : 6414 – 6420 .
  • Serp , P. , Corrias , M. and Kalck , P. 2003 . Carbon nanotubes and nanofibers in catalysis . Appl. Catal. A , 253 : 337 – 358 .
  • Shaoming , H. and Dai , H. 2002 . Plasma etching for purification and controlled opening of aligned carbon nanotubes . J. Phys. Chem. B , 106 : 3543 – 3545 .
  • Shim , M. , Kam , N. W.S. , Chen , R. J. , Li , Y. and Dai , H. 2002 . Functionalization of carbon nanotube for biompatibility and biomolecular recoginition . Nano Lett. , 2 : 285 – 288 .
  • Snow , E. S. and Perkins , F. K. 2005 . Capacitance and conductance of single‐walled carbon nanotubes in the presence of chemical vapors . Nano Lett. , 5 : 2414 – 2417 .
  • Sotiropoulou , S. and Chaniotakis , N. A. 2003 . Carbon nanotube array based biosensor . Anal. Bioanal. Chem. , 375 : 103 – 105 .
  • Soundarrajan , P. , Patil , A. and Dai , L. 2003 . Surface modification of aligned carbon nanotube arrays for electrochemical sensing applications . J. Vac. Sci. Technol., A , 21 : 1198 – 1201 .
  • Stone , V. and Donaldson , K. 2006 . Nanotoxicology: Signs of stress . Nat. Nanotech. , 1 : 23 – 24 .
  • Su , M. , Li , S. and Dravid , V. P. 2003 . Miniaturized chemical multiplexed sensor array . J. Am. Chem. Soc. , 125 : 9930 – 9931 .
  • Sun , S. , Meng , G. , Zhang , M. , Hao , Y. , Zhang , X. and Zhang , L. 2003 . Microscopy study of the growth process and structural features of closely packed silica nanowires . J. Phys. Chem. B , 107 : 13029 – 13032 .
  • Tans , S. J. , Devoret , M. H. , Dai , H. J. , Thess , A. , Smalley , R. E. , Geerligs , L. J. and Dekker , C. 1997 . Individual single‐wall carbon nanotubes as quantum wires . Nature , 386 : 474 – 477 .
  • Terrones , M. , Jorio , A. , Endo , M. , Rao , A. M. , Kim , Y. A. , Hayashi , T. , Terrones , H. , Charlier , J. C. , Dressalhaus , G. and Dressalhaus , M. S. 2004 . New direction in nanotube science . Mater. Today , 7 ( 10 ) : 30 – 45 .
  • Thess , A. , Lee , R. , Nikolaev , P. , Dai , H. , Petit , P. , Robert , J. , Xu , C. , Lee , Y. H. , Kim , S. G. , Rinzler , A. G. , Colbert , D. T. , Scuseria , G. E. , Tománek , D. , Fischer , J. E. and Smalley , R. E. 1996 . Crystalline ropes of metallic carbon nanotubes . Science , 273 : 483 – 487 .
  • Tsai , Y. C. , Li , C. L. and Chen , J. M. 2005 . Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function . Langmuir , 21 : 3653 – 3658 .
  • Tu , Y. , Lin , Y. and Ren , Z. F. 2003 . Nanoelectrode arrays based on low density aligned carbon nanotubes . Nano Lett. , 3 : 107 – 109 .
  • Ung , D. , Soumare , Y. , Chakroune , N. , Viau , G. , Vaulay , M.‐J. , Richard , V. and Fievet , F. 2007 . Growth of magnetic nanowires and nanodumbbells in liquid polyol . Chem. Mater. , 19 : 2084 – 2094 .
  • Vishwanath , S. , Bhattacharyya , D. , Huang , W. and Bachas , L. G. 1995 . Site‐directed and random enzyme immobilization on functionalized membranes: kinetic studies and models . J. Membr. Sci. , 108 : 1 – 13 .
  • Vo‐Dinh , T. , Alarie , J. P. , Cullum , B. M. and Griffin , G. D. 2000 . Antibody‐based nanoprobe for measurement of a fluorescent analyte in a single cell . Nat. Biotechnol. , 18 : 764 – 767 .
  • Vo‐Dinh , T. 2002 . Nanobiosensors: Probing the sanctuary of individual living cells . J. Cell. Biochem. , 87 ( S39 ) : 154 – 161 .
  • Vo‐Dinh , T. and Kasili , P. 2005 . Fiber‐optic nanosensors for single‐cell monitoring . Anal. Bioanal. Chem. , 382 : 918 – 925 .
  • Vo‐Dinh , T. , Kasili , P. and Wabuyele , M. 2006 . Nanoprobes and nanobiosensors for monitoring and imaging individual living cells . Nanomedicine , 2 : 22 – 30 .
  • Wagner , R. S. and Ellis , W. C. 1965 . The vapor‐liquid‐solid mechanism of crystal growth and its application to silicon . Trans. Metall. Soc. AIME , 233 : 1053 – 1063 .
  • Wanekeya , A. K. , Chen , W. , Myuang , N. V. and Mulchandani , A. 2006 . Nanowire‐based electrochemical biosensors . Electroanalysis , 18 : 533 – 550 .
  • Wang , A. A. , Lee , J. , Jenikova , G. , Mulchandani , A. , Myung , N. V. and Chen , W. 2006 . Controlled assembly of multi‐segment nanowires by histidine‐tagged peptides . Nanotechnology , 17 : 3375 – 3379 .
  • Wang , J. 2005 . Nanomaterial‐based electrochemical biosensors . Analyst , 130 : 421 – 426 .
  • Wang , J. and Arnold , M. A. 1988 . Fiber‐optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide . Anal. Chem. , 60 : 1080 – 1082 .
  • Wang , J. and Wu , H. 1993 . Permselective lipid‐poly(o‐phenylenediamine) coatings for amperometric biosensing of glucose . Anal. Chim. Acta , 283 : 683 – 688 .
  • Wang , J. , Musameh , M. and Lin , Y. 2003 . Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors . J. Am. Chem. Soc. , 125 : 2408 – 2409 .
  • Wang , J. and Musameh , M. 2003 . Carbon nanotube/Teflon composite electrochemical sensors and biosensors . Anal. Chem. , 75 : 2075 – 2079 .
  • Wang , S. , Humphreys , E. S. , Chung , S. Y. , Delduco , D. F. , Lustig , S. R. , Wang , H. , Parker , K. N. , Rizzo , N. W. , Subramony , S. , Chiang , Y. M. and Jagota , A. 2003 . Peptides with selective affinity for carbon nanotubes . Nat. Mater. , 2 : 196 – 200 .
  • Wang , X. , Summers , C. J. and Wang , Z. L. 2004 . Large‐scale hexagonal‐patterned growth of aligned ZnO nanorods for nano‐optoelectronics and nanosensor arrays . Nano Lett. , 4 : 423 – 426 .
  • Wang , Z. L. 2003 . Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—From materials to nanodevices . Adv. Mater. , 15 : 432 – 436 .
  • Wei , S. , Zhao , F. , Xu , Z. and Zeng , B. 2006 . Voltammetric determination of folic acid with a multi‐walled carbon nanotube‐modified gold electrode . Micochim. Acta , 152 : 285 – 290 .
  • Writz , M. , Yu , S. and Martin , C. R. 2002 . Template synthesized gold nanotube membranes for chemical separations and sensing . Analyst , 127 : 871 – 879 .
  • Wu , Y. , Yan , H. , Huang , M. , Messer , B. , Song , J. H. and Yang , P. 2002 . Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties . Chem. Eur. J. , 8 : 1260 – 1268 .
  • Yamamoto , K. , Shi , G. , Zhou , T. , Xu , F. , Xu , J. , Kato , T. , Jin , J. X. and Jin , L. 2003 . Study of carbon nanotubes–HRP modified electrode and its application for novel on‐line biosensors . Analyst , 128 : 249 – 254 .
  • Yang , Y. H. , Wu , S. J. , Chiu , H. S. , Lin , P. I. and Chen , Y. T. 2004 . Catalytic growth silicon nanowires assisted by laser ablation . J. Phys. Chem. B , 108 : 846 – 852 .
  • Yin , A. J. , Li , J. , Jian , W. , Bennett , A. J. and Xu , J. M. 2001 . Fabrication of highly ordered metallic nanowire arrays by electrodeposition . Appl. Phys. Lett. , 79 : 1039 – 1041 .
  • Yu , C. and Irudayaraj , J. 2007 . Multiplex biosensor using gold nanorods . Anal. Chem. , 79 : 572 – 579 .
  • Yu , M. F. , Files , B. S. , Arepalli , S. and Ruoff , R. S. 2000 . Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties . Phys. Rev. Lett. , 84 : 5552 – 5555 .
  • Yun , M. , Myung , N. V. , Vasquez , R. P. , Lee , C. , Menke , E. and Penner , R. M. 2004 . Electrochemically grown wires for individually addressable sensor arrays . Nano Lett. , 4 : 419 – 422 .
  • Zhao , Q. , Guan , L. , Gu , Z. and Zhuang , Q. 2005 . Determination of phenolic compounds based on the tyrosinase‐ single walled carbon nanotubes sensor . Electroanalysis , 17 : 85 – 88 .
  • Zhong , Z. , Wang , D. , Cui , Y. , Bockrath , W. M. and Lieber , C. M. 2003 . Nanowire crossbar arrays as address decoders for integrated nanosystems . Science , 302 : 1377 – 1379 .
  • Zhu , Y. , Zhao , Q. , Li , Y. , Cai , X. and Li , W. 2006 . The interaction and toxicity of multi‐walled carbon nanotubes with . Stylonychia mytilus. J. Nanosci. Nanotechnol. , 6 : 1357 – 1364 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.