245
Views
24
CrossRef citations to date
0
Altmetric
Mini-Review

Electrochemical Biosensing Systems Based on Carbon Nanotubes and Carbon Nanofibers

, &
Pages 2271-2287 | Received 30 May 2007, Accepted 07 Jul 2007, Published online: 25 Oct 2007

References

  • Azamian , B. R. , Coleman , K. S. , Davis , J. J. , Hanson , N. and Green , M. L.H. 2002 . Directly observed covalent coupling of quantum dots to single‐wall carbon nanotubes . Chem. Commun. , 4 : 366 – 367 .
  • Baker , S. E. , Colavita , P. E. , Tse , K. Y. and Hamers , R. J. 2006 . Functionalized vertically aligned carbon nanofibers as scaffolds for immobilization and electrochemical detection of redox‐active proteins . Chem. Mater. , 18 : 4415 – 4422 .
  • Baker , S. E. , Tse , K. Y. , Hindin , E. , Nichols , B. M. , Clare , T. L. and Hamers , R. J. 2005 . Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers . Chem. Mater. , 17 : 4971 – 4978 .
  • Bekyarova , E. , Kaneko , K. , Yudasaka , M. , Murata , K. , Kasuya , D. and Iijima , S. 2002 . Micropore development and structure rearrangement of single‐wall carbon nanohorn assemblies by compression . Adv. Mater. , 14 : 973 – 975 .
  • Besteman , K. , Lee , J.‐O. , Wiertz , F. G. M. , Heering , H. A. and Dekker , C. 2003 . Enzyme‐coated carbon nanotubes as single‐molecule biosensors . Nano Lett. , 3 : 727 – 730 .
  • Boo , H. , Jeong , R.‐A. , Park , S. , Kim , K. S. , An , K. H. , Lee , Y. H. , Han , J. H. , Kim , H. C. and Chung , T. D. 2006 . Electrochemical nanoneedle biosensor based on multiwall carbon nanotube . Anal. Chem. , 78 : 617 – 620 .
  • Chaniotakis , N. A. 2007 . “ Fullerene‐based electrochemical detection methods for biosensing ” . In Nanomaterials for Biosensors. Nanotechnologies for the Life Sciences Edited by: Kumar , C. Vol. 8 , Wiley‐VCH Verlag GmbH & Co. KGaA .
  • Cui , Y. , Wei , Q. , Park , H. and Lieber , C. M. 2001 . Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species . Science , 293 : 1289 – 1292 .
  • Dai , H. 2001 . Carbon nanotubes: Opportunities and challenges . Surf. Sci. , 500 : 218 – 241 .
  • Diaz , J. F. and Balkus , K. J. Jr. 1996 . Enzyme immobilization in MCM‐41 molecular sieve . J. Mol. Catal. B Enzym. , 2 : 115 – 126 .
  • Dyal , A. , Loos , K. , Noto , M. , Chang , S. W. , Spagnoli , C. , Shafi , K. , Ulman , A. , Cowman , M. and Gross , R. A. 2003 . Activity of Candida rugosa lipase immobilized on gamma‐Fe2O3 magnetic nanoparticles . J. Am. Chem. Soc. , 125 : 1684 – 1685 .
  • Dzenis , Y. 2004 . Spinning continuous fibers for nanotechnology . Science , 304 : 1917 – 1919 .
  • Endo , M. , Kim , Y. A. , Fukai , T. , Hayashi , T. , Oshida , K. , Terrones , M. , Yanagisawa , T. , Higaki , S. and Dresselhaus , M. S. 2002 . Structural characterization of cup‐stacked‐type nanofibers with an entirely hollow core . Appl. Phys. Lett. , 80 : 1267 – 1269 .
  • Fan , J. , Yudasaka , M. , Miyawaki , J. , Ajima , K. , Murata , K. and Iijima , S. 2006 . Control of hole opening in single‐wall carbon nanotubes and single‐wall carbon nanohorns using oxygen . J. Phys. Chem. B , 110 : 1587 – 1591 .
  • Gavalas , V. G. and Chaniotakis , N. A. 2000a . Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl‐dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon . Anal. Chim. Acta , 404 : 67 – 73 .
  • Gavalas , V. G. and Chaniotakis , N. A. 2000b . [60]Fullerene‐mediated amperometric biosensors . Anal. Chim. Acta , 409 : 131 – 135 .
  • Gavalas , V. G. and Chaniotakis , N. A. 2001 . Lactate biosensor based on the adsorption of polyelectrolyte stabilized lactate oxidase into porous conductive carbon . Microchim. Acta , 136 : 211 – 215 .
  • Han , Y. J. , Watson , J. T. , Stucky , G. D. and Butler , A. 2002 . Catalytic activity of mesoporous silicate‐immobilized chloroperoxidase. J . Mol. Catal. B Enzym. , 17 : 1 – 8 .
  • Haruyama , T. 2003 . Micro- and nano‐biotechnology for biosensing cellular responses . Adv. Drug Deliv Rev. , 55 : 393 – 401 .
  • Hirsch , A. 2002 . Functionalization of single‐walled carbon nanotubes . Angew. Chem. Intern. Ed. , 41 : 1853 – 1859 .
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56 – 58 .
  • Jain , K. K. 2003 . Nanodiagnostics: application of nanotechnology in molecular diagnostics . Expert Rev. of Mol. Diagn. , 3 : 153 – 161 .
  • Jia , H. , Zhu , G. and Wang , P. 2003 . Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility . Biotechnol. Bioeng. , 84 : 406 – 414 .
  • Jia , H. , Zhu , G. , Vugrinovich , B. , Kataphinan , W. , Reneker , D. H. and Wang , P. 2002 . Enzyme‐carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts . Biotechnol. Prog. , 18 : 1027 – 1032 .
  • Jianrong , C. , Yuqing , M. , Nongyue , H. , Xiaohua , W. and Sijao , L. 2004 . Nanotechnology and biosensors . Biotech. Adv. , 22 : 505 – 518 .
  • Joshi , P. P. , Merchant , S. A. , Wang , Y. and Schmidtke , D. W. 2005 . Amperometric biosensors based on redox polymer‐carbon nanotube‐enzyme composites . Anal. Chem. , 77 : 3183 – 3188 .
  • Lei , C. , Shin , Y. , Liu , J. and Ackerman , E. J. 2002 . Entrapping enzyme in a functionalized nanoporous support . J. Am. Chem. Soc. , 124 : 11242 – 11243 .
  • Li , J. , Ng , H. T. , Cassell , A. , Fan , W. , Chen , H. , Ye , Q. , Koehne , J. , Han , J. and Meyyappan , M. 2003 . Carbon nanotube nanoelectrode array for ultrasensitive dna detection . Nano Lett. , 3 : 597 – 602 .
  • Lin , Y. , Lu , F. , Tu , Y. and Ren , Z. 2004 . Glucose biosensors based on carbon nanotube nanoelectrode ensembles . Nano Lett. , 4 : 191 – 195 .
  • Liu , G. and Lin , Y. 2006a . Amperometric glucose biosensor based on self‐assembling glucose oxidase on carbon nanotubes . Electrochem Commun. , 8 : 251 – 256 .
  • Liu , G. and Lin , Y. 2006b . Biosensor based on self‐assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents . Anal. Chem. , 78 : 835 – 843 .
  • Liu , Y. , Qu , X. , Guo , H. , Chen , H. , Liu , B. and Dong , S. 2006 . Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite . Biosens. Bioelectron. , 21 : 2195 – 2201 .
  • Luong , J. H.T. , Hrapovic , S. and Wang , D. 2005 . Multiwall carbon nanotube (MWCNT) based electrochemical biosensors for mediatorless detection of putrescine . Electroanal. , 17 : 47 – 53 .
  • Luque , G. L. , Ferreyra , N. F. and Rivas , G. A. 2006 . Glucose biosensor based on the use of a carbon nanotube paste electrode modified with metallic particles . Microchim. Acta , 152 : 277 – 283 .
  • Maehashi , K. , Katsura , T. , Kerman , K. , Takamura , Y. , Matsumoto , K. and Tamiya , E. 2007 . Label‐free protein biosensor based on aptamer‐modified carbon nanotube field‐effect transistors . Anal. Chem. , 79 : 782 – 787 .
  • Manso , J. , Mena , M. L. , Yáñez‐Sedeño , P. and Pingarrón , J. 2007 . Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes . J. Electroanal. Chem. , 603 : 1 – 7 .
  • Merkulov , V. I. , Hensley , D. H. , Melechko , A. V. , Guillorn , M. A. , Lowndes , D. H. and Simpson , M. L. 2002 . Control mechanisms for the growth of isolated vertically aligned carbon nanofibers . J. Phys. Chem. B , 106 : 10570 – 10577 .
  • Mozhaev , V. V. , Melik‐Nubarov , N. S. , Sergeeva , M. V. , Siksnis , V. and Martinek , K. 1990 . Strategy for stabilizing enzymes Part One: Increasing stability of enzymes via their multi‐point interaction with a support . Biocatalysis , 3 : 179 – 187 .
  • Nednoor , P. , Capaccio , M. , Gavalas , V. G. , Meier , M. S. , Anthony , J. E. and Bachas , L. G. 2004 . Hybrid nanoparticles based on organized protein immobilization on fullerenes . 15 : 12 – 15 .
  • Niemeyer , C. M. 2001 . Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science . Angew. Chem. Int. Ed. , 40 : 4128 – 4158 .
  • O'Connor , M. , Kim , S. N. , Killard , A. J. , Forster , R. J. , Smyth , M. R. , Papadimitrakopoulos , F. and Rusling , J. F. 2004 . Mediated amperometric immunosensing using single walled carbon nanotube forests . Analyst , 129 : 1176 – 1180 .
  • Odom , T. W. , Huang , J. L. , Kim , P. and Lieber , C. M. 2000 . Structure and electronic properties of carbon nanotubes . J. Phys. Chem. B , 104 : 2794 – 2809 .
  • Patolsky , F. , Weizmann , Y. and Willner , I. 2004 . Long‐range electrical contacting of redox enzymes by SWCNT connectors . Angew. Chem. Int. Ed. , 43 : 2113 – 2117 .
  • Pérez , B. , Pumera , M. , del Valle , M. , Merkoçi , A. and Alegret , S. 2005 . Glucose biosensor based on carbon nanotube epoxy composites . J. Nanosci. Nanotechnol. , 5 : 1694 – 1698 .
  • Popat , K. C. , Mor , G. , Grimes , C. A. and Desai , T. A. 2004 . Surface modification of nanoporous alumina surfaces with poly(ethylene glycol) . Langmuir , 20 : 8035 – 8041 .
  • Pumera , M. , Sánchez , S. , Ichinose , I. and Tang , J. 2007 . Electrochemical nanobiosensors . Sens. Actuators B: Chem. , 123 : 1195 – 1205 .
  • Ramanathan , K. , Bangar , M. A. , Yun , M. , Chen , W. , Myung , N. V. and Mulchandani , A. 2005 . Bioaffinity sensing using biologically functionalized conducting‐polymer nanowire . J. Am. Chem. Soc. , 127 : 496 – 497 .
  • Rubianes , M. D. and Rivas , G. A. 2003 . Carbon nanotubes paste electrode . Electrochem. Commun. , 5 : 689 – 694 .
  • Rubianes , M. D. and Rivas , G. A. 2005 . Enzymatic biosensors based on carbon nanotubes paste electrodes . Electroanal. , 17 : 73 – 78 .
  • Rubianes , M. D. and Rivas , G. A. 2007 . Dispersion of multi‐wall carbon nanotubes in polyethylenimine:A new alternative for preparing electrochemical sensors . Electrochem. Commun. , 9 : 480 – 484 .
  • Sánchez , S. , Pumera , M. , Cabruja , E. and Fàbregas , E. 2007 . Carbon nanotube/polysulfone composite screen‐printed electrochemical enzyme biosensors . Analyst , 132 : 142 – 147 .
  • So , H. M. , Won , K. , Kim , Y. H. , Kim , B. K. , Ryu , B. H. , Na , P. S. , Kim , H. and Lee , J. O. 2005 . Single‐walled carbon nanotube biosensors using aptamers as molecular recognition elements . J. Am. Chem. Soc. , 127 : 11906 – 11907 .
  • Sotiropoulou , S. and Chaniotakis , N. A. 2003 . Carbon nanotube array‐based biosensor . Anal. Bioanal. Chem. , 375 : 103 – 105 .
  • Sotiropoulou , S. and Chaniotakis , N. A. 2005 . Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix . Anal. Chim. Acta , 530 : 199 – 204 .
  • Sotiropoulou , S. , Fournier , D. and Chaniotakis , N. A. 2005 . Genetically engineered acetylcholinesterase‐based biosensor for attomolar detection of dichlorvos . Biosens. Bioelectron. , 20 : 2347 – 2352 .
  • Sotiropoulou , S. , Gavalas , V. , Vamvakaki , V. and Chaniotakis , N. A. 2003 . Novel carbon materials in biosensor systems . Biosens. Bioelectron. , 18 : 211 – 215 .
  • Takahashi , H. , Li , B. , Sasaki , T. , Miyazaki , C. , Kajino , T. and Inagaki , S. 2000 . Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica . Chem. Mater. , 12 : 3301 – 3305 .
  • Tang , X. , Bansaruntip , S. , Nakayama , N. , Yenilmez , E. , Chang , Y. I. and Wan , Q. 2006 . Carbon nanotube dna sensor and sensing mechanism . Nano Lett. , 6 : 1632 – 1636 .
  • Terrones , M. , Hsu , W. K. , Kroto , H. W. and Walton , D. R.M. 1999 . Nanotubes: A revolution in materials science and electronics . Top. Curr. Chem. , 199 : 189 – 234 .
  • Tsai , Y‐C. and Chiu , C‐C. 2007 . Amperometric biosensors based on multiwalled carbon nanotube‐Nafion‐tyrosinase nanobiocomposites for the determination of phenolic compounds . Sens. Actuators B: Chem. , doi:10.1016/j.snb.2007.01.032
  • Tsai , Y‐C. , Chen , S‐Y. and Liaw , H‐W. 2007 . Immobilization of lactate dehydrogenase within multiwalled carbon nanotube‐chitosan nanocomposite for application to lactate biosensors . Sens. Actuators B: Chem. , doi:10.1016/j.snb.2007.02.052
  • Tsai , Y‐C. , Li , S‐C. and Chen , J‐M. 2005 . Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function . Langmuir , 21 : 3653 – 3658 .
  • Vamvakaki , V. and Chaniotakis , N. A. 2006 . Carbon nanostructures as transducers in biosensors . Sensors & Actuators B , doi:10.1016/j.snb.2006.11.042
  • Vamvakaki , V. , Tsagaraki , K. and Chaniotakis , N. 2006 . Carbon nanofiber—based glucose biosensor . Anal. Chem. , 78 : 5538 – 5542 .
  • Van Noort , D. and Mandenius , C. F. 2000 . Porous gold surfaces for biosensor applications . Biosens. Bioelectron. , 15 : 203 – 209 .
  • Vaseashta , A. and Dimova‐Malinovska , D. 2005 . Nanostructured and nanoscale devices, sensors and detectors . Sci. Technol. Adv. Mater. , 6 : 312 – 318 .
  • Viswanathan , S. , Wu , L. C. , Huang , M. R. and Ho , J. A. 2006 . Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4‐ethylenedioxythiophene)‐coated carbon nanotubes . Anal. Chem. , 78 : 1115 – 1121 .
  • Vo‐Dinh , T. , Cullum , B. M. and Stokes , DL. 2001 . Nanosensors and biochips: frontiers in biomolecular diagnostics . Sens. Actuators B , 74 : 2 – 11 .
  • Wang , J. and Musameh , M. 2003a . Enzyme‐dispersed carbon‐nanotube electrodes: A needle microsensor for monitoring glucose . Analyst , 128 : 1382 – 1385 .
  • Wang , J. and Musameh , M. 2004 . Carbon nanotube screen‐printed electrochemical sensors . Analyst , 129 : 1 – 2 .
  • Wang , J. and Musameh , M. 2003b . Carbon nanotube/teflon composite electrochemical sensors and biosensors . Anal. Chem. , 75 : 2075 – 2079 .
  • Wang , J. , Kawde , A. N. and Musameh , M. 2003 . Carbon‐nanotube‐modified glassy carbon electrodes for amplified label‐free electrochemical detection of DNA hybridization . Analyst , 128 : 912 – 916 .
  • Wang , J. , Liu , G. and Jan , M. R. 2004 . Ultrasensitive electrical biosensing of proteins and DNA: Carbon‐nanotube derived amplification of the recognition and transduction events . J. Am. Chem. Soc. , 126 : 3010 – 3011 .
  • Wang , J. , Liu , G. and Lin , Y. 2006 . Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubes . Analyst , 131 : 477 – 483 .
  • Wang , P. , Dai , S. , Waezsada , S. D. , Tsao , A. and Davison , B. H. 2001 . Enzyme stabilization by covalent binding in nanoporous sol–gel glass for nonaqueous biocatalysis . Biotechnol. Bioeng. , 74 : 249 – 255 .
  • Wang , Y. , Tang , Z. , Tan , S. and Kotov , N. A. 2005 . Biological assembly of nanocircuit prototypes from protein‐modified CdTe nanowires . Nano Lett. , 5 : 243 – 248 .
  • Wie , Y. , Xu , J. , Feng , Q. , Dong , H. and Lin , M. 2000 . Encapsulation of enzymes in mesoporous host materials via the nonsurfactant‐templated sol–gel process . Mater. Lett. , 44 : 6 – 11 .
  • Wohlstadter , J. N. , Wilbur , J. L. , Sigal , G. B. , Biebuyck , H. A. , Billadeau , M. A. , Dong , L. , Fischer , A. B. , Gudibande , S. R. , Jameison , S. H. , Kenten , J. H. , Leginus , J. , Leland , J. K. , Massey , R. J. and Wohlstadter , S. J. 2003 . Carbon nanotube‐based biosensor . Adv. Mater. , 15 : 1184 – 1187 .
  • Wu , L. , Yan , F. and Ju , H. 2007b . An amperometric immunosensor for seperation‐free immunoassay of CA125 based its covalent immobilization coupled with thionine on carbon nanofiber . J. Immunol. Methods , 322 : 12 – 19 .
  • Wu , L. , Zhang , X. and Ju , H. 2007a . Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential . Anal. Chem. , 79 : 453 – 458 .
  • Yu , X. , Chattopadhyay , D. , Galeska , I. , Papadimitrakopoulos , F. and Rusling , J. F. 2003 . Peroxidase activity of enzymes bound to the ends of single‐wall carbon nanotube forest electrodes . Electrochem. Commun. , 5 : 408 – 411 .
  • Yu , X. , Munge , B. , Patel , V. , Jensen , G. , Bhirde , A. , Gong , J. D. , Kim , S. N. , Gillespie , J. , Gutkind , J. S. , Papadimitrakopoulos , F. and Rusling , J. F. 2006 . Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers . J. Am. Chem. Soc. , 128 : 11199 – 11205 .
  • Zhang , M. , Smith , A. and Gorski , W. 2004 . Carbon nanotube‐chitosan system for electrochemical sensing based on dehydrogenase enzymes . Anal. Chem. , 76 : 5045 – 5050 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.