690
Views
21
CrossRef citations to date
0
Altmetric
BIOANALYTICAL

Application of Carbon Nanotubes in the Extraction and Electrochemical Detection of Organophosphate Pesticides: A Review

, , &
Pages 783-803 | Received 21 Dec 2010, Accepted 17 Oct 2011, Published online: 30 May 2012

REFERENCES

  • Ajayan , P. M. , T. W. Ebbesen , T. Ichihashi , S. Iijima , K. Tanigaki , and H. Hiura . 1993 . Opening carbon nanotubes with oxygen and implications for filling . Nature 362 : 522 – 525 .
  • Balavoine , F. , P. Schultz , C. Richard , V. Mallouh , T. W. Ebbesen , and C. Mioskowski . 1999 . Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors . Angew. Chem. Int. Ed. 38 : 1912 – 1915 .
  • Baughman , R. H. , A. A. Zakhidov , and W. A. de Heer . 2002 . Carbon nanotubes – The route toward applications . Science 297 : 787 – 792 .
  • Bernabei , M. , S. Chiavarini , C. Cremisini , and G. Palleschi . 1993 . Anticholinesterase activity measurement by a choline biosensor – application in water analysis . Biosens. Bioelectron. 8 : 265 – 271 .
  • Britto , P. J. , K. S. V. Santhanam , A. Rubio , J. A. Alonso , and P. M. Ajayan . 1999 . Improved charge transfer at carbon nanotube electrodes . Adv. Mater. 11 : 154 – 157 .
  • Chen , D. Q. , C. H. Z. Chen , and D. Du . 2010 . Detection of organophosphate pesticide using polyaniline and carbon nanotubes composite based on acetylcholinesterase inhibition . J. Nanosci. Nanotechnol. 10 : 5662 – 5666 .
  • Chen , G. C. , X. Q. Shan , Y. Q. Zhou , X. E. Shen , H. L. Huang , and S. U. Khan . 2009 . Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes . J. Hazard. Mater. 169 : 912 – 918 .
  • Choi , B. G. , H. Park , T. J. Park , D. H. Kim , S. Y. Lee , and W. H. Hong . 2009. Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode. Electrochem. Comm. 11: 672–675.
  • Cremisini , C. , S. Disario , J. Mela , R. Pilloton , and G. Palleschi . 1995 . Evaluation of the use of free and immobilized acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor . Anal. Chim. Acta 311 : 273 – 280 .
  • Davis , J. J. , K. S. Coleman , B. R. Azamian , C. B. Bagshaw , and M. L. H. Green . 2003 . Chemical and biochemical sensing with modified single walled carbon nanotubes . Chem. Eur. J. 9 : 3732 – 3739 .
  • Deo , R. P. , J. Wang , I. Block , A. Mulchandani , K. A. Joshi , M. Trojanowicz , F. Scholz , W. Chen , and Y. H. Lin . 2005 . Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor . Anal. Chim. Acta 530 : 185 – 189 .
  • Dong , M. F. , Y. Q. Ma , F. M. Liu , C. F. Qian , L. J. Han , and S. R. Jiang . 2009 . Use of multiwalled carbon nanotubes as a SPE adsorbent for analysis of carfentrazone-ethyl in water . Chromatographia 69 : 73 – 77 .
  • Dong , M. F. , Y. Q. Ma , E. C. Zhao , C. F. Qian , L. J. Han , and S. R. Jiang . 2009 . Using multiwalled carbon nanotubes as solid phase extraction adsorbents for determination of chloroacetanilide herbicides in water . Microchim. Acta 165 : 123 – 128 .
  • Du , D. , J. Cai , D. D. Song , and A. D. Zhang . 2007 . Rapid determination of triazophos using acetylcholinesterase biosensor based on sol-gel interface assembling muldwall carbon nanotubes . J. Appl. Electrochem. 37 : 893 – 898 .
  • Du , D. , J. W. Ding , J. Cai , and A. D. Zhang . 2007 . Electrochemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template . Sens. Actuators B 127 : 317 – 322 .
  • Du , D. , X. Huang , J. Cai , A. D. Zhang , J. W. Ding , and S. Z. Chen . 2007 . An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan composite . Anal. Bioanal. Chem. 387 : 1059 – 1065 .
  • Du , D. , M. H Wang , J. Cai , Y. H. Qin , and A. D. Zhang . 2010 . One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor . Sens. Actuators B 143 : 524 – 529 .
  • Du , D. , M. H. Wang , J. Cai , and A. D. Zhang . 2010 . Sensitive acetylcholinesterase biosensor based on assembly of beta-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide . Sens. Actuators B 146 : 337 – 341 .
  • Du , D. , M. H. Wang , J. M. Zhang , H. Cai , H. Y. Tu , and A. D. Zhang . 2008 . Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide . Electrochem. Comm. 10 : 85 – 89 .
  • Du , D. , X. X. Ye , J. Cai , J. A. Liu , and A. D. Zhang . 2010 . Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates . Biosens. Bioelectron. 25 : 2503 – 2508 .
  • Fan , S. S. , F. Xiao , L. Q. Liu , F. Q. Zhao , and B. Z. Zeng . 2008 . Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder . Sensors Actuators B 132 : 34 – 39 .
  • Gan , N. , X. Yang , D. H. Xie , Y. Z. Wu , and W. G. Wen . 2010 . A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode . Sensors 10 : 625 – 638 .
  • Gao , Y. , and L. Kyratzis . 2008 . Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-A critical assessment . Bioconjugate Chem. 19 : 1945 – 1950 .
  • Gao , Y. , I. Kyratzis , R. Taylor , C. Huynh , and M. Hickey . 2009 . Immobilization of acetylcholinesterase onto carbon nanotubes utilizing streptavidin-biotin interaction for the construction of amperometric biosensors for pesticides . Anal. Lett. 42 : 2711 – 2727 .
  • Gong , J. M. , L. Y. Wang , and L. Z. Zhang . 2009. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Biosens. Bioelectron. 24: 2285–2288.
  • Hadjmohammadi , M. R. , M. Peyrovi , and P. Biparva . 2010 . Comparison of C-18 silica and multi-walled carbon nanotubes as the adsorbents for the solid-phase extraction of Chlorpyrifos and Phosalone in water samples using HPLC . J. Sep. Sci. 33 : 1044 – 1051 .
  • Hart , J. P. , and I. C. Hartley . 1994 . Voltammetric and amperometric studies of thiocholine at a screen-printed carbon electrode chemically-modified with cobalt phthalocyanine – Studies towards a pesticide sensor . Analyst 119 : 259 – 263 .
  • Hildebrandt , A. , R. Bragos , S. Lacorte abd , J. L. Marty . 2008 . Performance of a portable biosensor for the analysis of organophosphorus and carbamate insecticides in water and food . Sensors Actuators B 133 : 195 – 201 .
  • Hildebrandt , A. , J. Ribas , R. Bragos , J. L. Marty , M. Tresanchez , and S. Lacorte . 2008 . Development of a portable biosensor for screening neurotoxic agents in water samples . Talanta 75 : 1208 – 1213 .
  • Hirsch , A. 2002 . Functionalization of single-walled carbon nanotubes . Angew. Chem. Int. Ed. 41 : 1853 – 1859 .
  • Hu , S. Q. , J. W. Xie , Q. H. Xu , K. T. Rong , G. L. Shen , and R. Q. Yu . 2003 . A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon . Talanta 61 : 769 – 777 .
  • Ivanov , Y. , I. Marinov , K. Gabrovska , N. Dimcheva , and T. Godjevargova . 2010 . Amperometric biosensor based on a site-specific immobilization of acetylcholinesterase via affinity bonds on a nanostructured polymer membrane with integrated multiwall carbon nanotubes . J. Mol. Catal. B-Enzy. 63 : 141 – 148 .
  • Jha , N. , and S. Ramaprabhu . 2010 . Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon . Nanoscale 2 : 806 – 810 .
  • Joshi , K. A. , M. Prouza , M. Kum , J. Wang , J. Tang , R. Haddon , W. Chen , W., and A. Mulchandani . 2006 . V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode . Anal. Chem. 78 : 331 – 336 .
  • Joshi , K. A. , J. Tang , R. Haddon , J. Wang , W. Chen , and A. Mulchandani . 2005 . A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode . Electroanalysis 17 : 54 – 58 .
  • Kandimalla , V. B. , and H. X. Ju . 2006 . Binding of acetylcholinesterase to a multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide . Chem. Eur. J. 12 : 1074 – 1080 .
  • Kralj , M. B. , P. Trebse , and M. Franko . 2006 . Oxidation as a pre-step in determination of organophosphorus compounds by the AChE-TLS bioassay . Acta Chim. Slov. 53 : 43 – 51 .
  • Li , J. Y. , and Y. M. Chi . 2009 . Determination of carbendazim with multiwalled carbon nanotubes-polymeric methyl red film modified electrode . Pestic. Biochem. Physiol. 93 : 101 – 104 .
  • Li , Q. L. , X. F. Wang , and D. X. Yuan . 2009 . Solid-phase extraction of polar organophosphorous pesticides from aqueous samples with oxidized carbon nanotubes . J. Environ. Monitor. 11 : 439 – 444 .
  • Lin , Y. H. , F. Lu , and J. Wang . 2004 . Disposable Carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents . Electroanalysis 16 : 145 – 149 .
  • Liu , G. D. , and Y. H. Lin . 2005a . Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents . Anal. Chem. 77 : 5894 – 5901 .
  • Liu , G. D. , and Y. H. Lin . 2005b . Electrochemical stripping analysis of organophosphate pesticides and nerve agents . Electrochem. Comm. 7 : 339 – 343 .
  • Liu , G. D. , and Y. H. Lin . 2006. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal. Chem. 78: 835–843.
  • Liu , H. M. , J. B. Li , X. Liu , and S. X. Jiang . 2009 . A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction-gas chromatographic analysis of phenols in water samples . Talanta 78 : 929 – 935 .
  • Liu , N. Y. , X. P. Cai , Y. Lei , Q. Zhang , M. B. Chan-Park , C. M. Li , W. Chen , and A. Mulchandani . 2007 . Single-walled carbon nanotube based real-time organophosphate detector . Electroanalysis 19 : 616 – 619 .
  • Liu , S. Q. , L. Yuan , X. L. Yue , Z. Z. Zheng , and Z. Y. Tang . 2008 . Recent advances in nanosensors for organophosphate pesticide detection . Adv. Powder Technol. 19 : 419 – 441 .
  • Manisankar , P. , P. A. Sundari , and R. Sasikumar . 2009 . Square-wave stripping voltammetric determination of some organic pollutants using modified electrodes. Int. J. Environ. Anal. Chem. 89 : 245 – 260 .
  • Manisankar , P. , P. L. A. Sundari , R. Sasikumar , and S. P. Palaniappan . 2008 . Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode . Talanta 76 : 1022 – 1028 .
  • Marty , J. L. , B. Leca , and T. Noguer . 1998 . Biosensors for the detection of pesticides . Analysis 26 : M144 – M149 .
  • Miller , J. K. , and D. E. Lenz . 2001 . Development of an immunoassay for diagnosis of exposure to toxic organophosphorus compounds . J. Appl. Toxicol. 21 : S23 – S26 .
  • Mulchandani , A. , W. Chen , P. Mulchandani , J. Wang , and K. R. Rogers . 2001 . Biosensors for direct determination of organophosphate pesticides . Biosens. Bioelectron. 16 : 225 – 230 .
  • Mulchandani , A. , I. Kaneva , and W. Chen . 1998 . Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber optic microbial biosensor . Anal. Chem. 70 : 5042 – 5046 .
  • Mulchandani , A. , P. Mulchandani , S. Chauhan , I. Kaneva , and W. Chen . 1998 . A potentiometric microbial biosensor for direct determination of organophosphate nerve agents . Electroanalysis 10 : 733 – 737 .
  • Mulchandani , A. , P. Mulchandani , and W. Chen . 1998 . Enzyme biosensor for determination of organophosphates . Field Anal. Chem. Technol. 2 : 363 – 369 .
  • Mulchandani , A. , P. Mulchandani , W. Chen , J. Wang , and L. Chen . 1999 . Amperometric thick film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase . Anal. Chem. 71 : 2246 – 2249 .
  • Mulchandani , A. , P. Mulchandani , I. Kaneva , and W. Chen . 1998 . Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode . Anal. Chem. 70 : 4140 – 4145 .
  • Mulchandani , A. , S. T. Pan , and W. Chen . 1999 . Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents . Biotechnol. Prog. 15 : 130 – 134 .
  • Mulchandani , P. , A. Mulchandani , I. Kaneva , and W. Chen . 1999 . Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode . Biosens. Bioelectron. 14 : 77 – 85 .
  • Muldoon , M. T. , and L. H. Stanker . 1997 . Molecularly imprinted solid phase extraction of atrazine from beef liver extracts . Anal. Chem. 69 : 803 – 808 .
  • Pedrosa , V. A. , R. Epur , J. Benton , R. A. Overfelt , and A. L. Simonian . 2009 . Copper nanoparticles and carbon nanotubes-based electrochemical sensing system for fast identification of tricresyl-phosphate in aqueous samples and air . Sensors Actuators B 140 : 92 – 97 .
  • Pedrosa , V. A. , S. Paliwal , S. Balasubramanian , D. Nepal , V. Davis , J. Wild , E. Ramanculov , and A. Simonian . 2010 . Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes . Colloids Surfaces B 77 : 69 – 74 .
  • Purves , D. 2008. Neuroscience . Sunderland , MA : Sinauer Associates, Inc.
  • Qu , Y. H. , Q. Sun , F. Xiao , G. Y. Shi , and L. T. Jin . 2010 . Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides . Bioelectrochem. 77 : 139 – 144 .
  • Rainina , E. I. , E. N. Efremenco , S. D. Varfolomeyev , A. L. Simonian , and J. R. Wild . 1996 . The development of a new biosensor based on recombinant E-coli for the direct detection of organophosphorus neurotoxins . Biosens. Bioelectron. 11 : 991 – 1000 .
  • Rao , C. N. R. , B. C. Satishkumar , A. Govindaraj , and M. Nath . 2001 . Nanotubes . Chemphyschem. 2 : 78 – 105 .
  • Ristori , C. , C. DelCarlo , M. Martini , A. Barbaro , and A. Ancarani . 1996 . Potentiometric detection of pesticides in water samples . Anal. Chim. Acta 325 : 151 – 160 .
  • Schoning , M. J. , R. Krause , K. Block , M. Musahmeh , A. Mulchandani , and J. Wang . 2003 . A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides . Sensors Actuators B 95 : 291 – 296 .
  • Sherma , J. 1993 . Pesticides . Anal. Chem. 65 : R40 – R54 .
  • Simonian , A. L. , B. D. DiSioudi , and J. R. Wild . 1999 . An enzyme based biosensor for the direct determination of diisopropyl fluorophosphate . Anal. Chim. Acta 389 : 189 – 196 .
  • Simonian , A. L. , E. I. Rainina , and J. R. Wild . 1997 . A new approach for discriminative detection of organophosphate neurotoxins in the presence of other cholinesterase inhibitors . Anal. Lett. 30 : 2453 – 2468 .
  • Siswana , M. , K. I. Ozoemena , and T. Nyokong . 2008 . Electrocatalytic detection of amitrole on the multi-walled carbon nanotube – Iron (II) tetra-aminophthalocyanine platform . Sensors 8 : 5096 – 5105 .
  • Stein , K. , and G. Schwedt . 1993 . Comparison of immobilization methods for the development of an acetylcholinesterase biosensor . Anal. Chim. Acta 272 : 73 – 81 .
  • Sun , X. , X. Y. Wang , and W. P. Zhao . 2010 . Multiwall carbon nanotube-based acetylcholinesterase biosensor for detecting organophosphorous pesticides . Sensor Lett. 8 : 247 – 252 .
  • Sundari , P. L. A. , S. P. Palaniappan , and P. Manisankar . 2010 . Enhanced sensing of carbendazim, a fungicide on functionalized multiwalled carbon nanotube modified glassy carbon electrode and its determination in real samples . Anal. Lett. 43 : 1457 – 1470 .
  • Tapsoba , I. , S. Bourhis , T. Feng , and M. Pontie . 2009 . Sensitive and selective electrochemical analysis of methyl-parathion (MPT) and 4-nitrophenol (PNP) by a new type p-NiTSPc/p-PPD coated carbon fiber microelectrode (CFME) . Electroanalysis 21 : 1167 – 1176 .
  • Trojanowicz , M. , and M. L. Hitchman . 1995 . A simple disposable potentiometric biosensor for pesticides . Chem. Anal. 40 : 609 – 617 .
  • Trojanowicz , M. , A. Mulchandani , and M. Mascini . 2004 . Carbon nanotubes-modified screen-printed electrodes for chemical sensors and biosensors . Anal. Lett. 37 : 3185 – 3204 .
  • Tsang , S. C. , P. J. F. Harris , and M. L. H. Green . 1993 . Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide . Nature 362 : 520 – 522 .
  • Turiel , E. , A. Martin-Esteban , P. Fernandez , C. Perez-Conde , and C. Camara . 2001 . Molecular recognition in a propazine-imprinted polymer and its application to the determination of triazines in environmental samples . Anal. Chem. 73 : 5133 – 5141 .
  • Viswanathan , S. , H. Radecka , and J. Radecki . 2009 . Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA . Biosens. Bioelectron. 24 : 2772 – 2777 .
  • Wang , J. 2005 . Carbon-nanotube based electrochemical biosensors: A review . Electroanalysis 17 : 7 – 14 .
  • Wang , J. , K. Chen , A. Mulchandani , P. Mulchandani , and W. Chen . 1999 . Remote biosensor for in-situ monitoring of organophosphate nerve agents . Electroanalysis 11 : 866 – 869 .
  • Wang , J. , R. P. Deo , and M. Musameh . 2003. Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes. Electroanalysis 15: 1830–1834.
  • Wang , J. , R. Krause , K. Block , M. Musameh , A. Mulchandani , and M. J. Schoning . 2003 . Flow injection amperometric detection of OP nerve agents based on an organophosphorus-hydrolase biosensor detector . Biosens. Bioelectron. 18 : 255 – 260 .
  • Wang , J. , Timchalk , C. , Lin , Y. H. 2008 . Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: An exposure biomarker of organophosphate pesticides and nerve agents . Environmental Sci. Technol. 42 : 2688 – 2693 .
  • Wang , Z. Y. , J. Zhao , F. M. Li , D. M. Gao , and B. S. Xing . 2009 . Adsorption and inhibition of acetylcholinesterase by different nanoparticles . Chemosphere 77 : 67 – 73 .
  • Zhang , S. , H. Zhao , and R. John . 2001 . Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors – theoretical and practical considerations . Biosens. Bioelectron. 16 : 1119 – 1126 .
  • Zhang , Y. , T. F. Kang , Y. W. Wan , and S. Y. Chen . 2009 . Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides . Microchim. Acta 165 : 307 – 311 .
  • Zhou , Q. X. , J. P. Xiao , G. H. Xie , W. D. Wang , Y. J. Ding , and H. H. Bai . 2009 . Enrichment of pyrethroid residues in environmental waters using a multiwalled carbon nanotubes cartridge, and analysis in combination with high performance liquid chromatography . Microchim. Acta 164 : 419 – 424 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.