106
Views
5
CrossRef citations to date
0
Altmetric
Sensors

Fabrication and Characterization of LaF3/Titania Nanotube Array Electrode for Determination of Fluoride Using a Headspace Single-Drop Microextraction System

, &
Pages 2455-2466 | Received 20 Mar 2012, Accepted 05 May 2012, Published online: 24 Oct 2012

REFERENCES

  • Badr , I. H. A. , and M. E. Meyerhoff . 2005 . Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum (III) octaethylporphyrin in thin polymeric film . J. Am. Chem. Soc. 127 : 5318 – 5319 .
  • Bai , J. , B. Zhou , L. Li , Y. Liu , Q. Zheng , J. Shao , X. Zhu , W. Cai , J. Liao , and L. Zou . 2008 . The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte . J. Mater. Sci. 43 : 1880 – 1884 .
  • Banerjee , S. , S. K. Mohapatra , M. Misra , and I. B. Mishra . 2009 . The detection of improvised nonmilitary peroxide-based explosives using a titania nanotube array sensor . Nanotechnology. 20 : 075502 .
  • Hang , Y. , and C. Wu . 2010 . Ion chromatography for rapid and sensitive determination of fluoride in milk after headspace single-drop microextraction with in situ generation of volatile hydrogen fluoride . Anal. Chim. Acta. 661 : 161 – 166 .
  • Jennings , J. R. , A. Ghicov , L. M. Peter , P. Schmuki , and A. B. Walker . 2008 . Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons . J. Am. Chem. Soc. 130 : 13364 – 13372 .
  • Jeon , T. H. , W. Choi , and H. Park . 2011 . Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays: energy level mismatch versus Surface Specific Reactivity . J. Phys. Chem. C. 115 : 7134 – 7142 .
  • John , S. E. , S. K. Mohapatra , and M. Misra . 2009 . Double-wall anodic titania nanotube arrays for water photooxidation . Langmuir. 25 : 8240 – 8247 .
  • Lai , C. Z. , S. S. Koseoglu , E. C. Lugert , P. G. Boswell , J. Rábai , T. P. Lodge , and P. Bühlmann . 2009 . Fluorous polymeric membranes for ionophore-based ion-selective potentiometry: How inert is teflon AF? J. Am. Chem. Soc. 131 : 1598 – 1606 .
  • Lan , Y. , X. P. Gao , H. Y. Zhu , Z. F. Zheng , T. Y. Yan , F. Wu , S. P. Ringer , and D. Y. Song . 2005 . Titanate nanotubes and nanorods prepared from rutile powder . Adv. Funct. Mater. 15 : 1310 – 1318 .
  • Li , D. , P. C. Chang , C. J. Chien , and J. G. Lu . 2010 . Applications of tunable TiO2 nanotubes as nanotemplate and photovoltaic device . Chem. Mater. 22 : 5707 – 5711 .
  • Li , S. , G. Zhang , D. Guo , L. Yu , and W. Zhang . 2009 . Anodization fabrication of highly ordered TiO2 nanotubes . J. Phys. Chem. C. 113 : 12759 – 12765 .
  • Light , T. S. , and C. C. Cappuccino . 1975 . Determination of fluoride in toothpaste using an ion-selective electrode . J. Chem. Educ. 52 : 247 – 250 .
  • Lin , L. , X. Huang , L. Wang , and A. Tang . 2010 . Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite . J. Solid State Sci. 12 : 1764 – 1769 .
  • Liu , Z. , and M. Misra . 2010 . Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays . Nanotechnology. 21 : 125703 .
  • Liu , Z. , X. Zhang , S. Nishimoto , M. Jin , D. A. Tryk , T. Murakami , and A. Fujishima . 2008 . Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol . J. Phys. Chem. C. 112 : 253 – 259 .
  • Mor , G. K. , O. K. Varghese , and M. Paulose . 2006 . A review on highly ordered vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications . Sol. Energy Mater Sol. Cells. 90 : 2011 – 2075 .
  • Naito , K. , T. Tachikawa , M. Fujitsuka , and T. Majima . 2009. Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J. Am. Chem. Soc. 131: 934–936.
  • Oliva , F. Y. , L. B. Avalle , E. Santos , and O. R. Camara . 2002 . Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates . J. Photochem. Photobiol. A. 146 : 175 – 188 .
  • Powder Diffraction File JCPDS: Joint Committee for Powder Diffraction Studies File No.32–0483 (hexagonal structure of LaF3) .
  • Quan , X. , S. Yang , X. Ruan , and H. Zhao . 2005 . Preparation of titania nanotubes and their environmental applications as electrode . Environ. Sci. Technol. 39 : 3770 – 3775 .
  • Rechnitz , G. A. 1970 . Chemical studies at ion-selective membrane electrodes . Acc. Chem. Res. 3 : 69 – 74 .
  • Rum , G. , W. Y. Lee , and J. Gardea-Torresdey . 2000 . Applications of a U.S. EPA-approved method for fluoride determination in an environmental chemistry laboratory: Fluoride detection in drinking water . J. Chem. Educ. 77 : 1604 – 1606 .
  • Shankar , K. , G. K. Mor , H. E. Prakasam , S. Yoriya , M. Paulose , O. K. Varghese , and C. A. Grimes . 2007 . Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells . Nanotechnology. 18 : 065707 .
  • Shi , X. , R. Liu , and Z. Xu . 2010 . Electrodeposition of CeF3 and CeF3: Tb Films by Electrochemical Generated Acid . Electrochem. Solid-State Lett. 13 : D43 – D46 .
  • Song , Y. Y. , F. Schmidt-Stein , S. Bauer , and P. Schmuki . 2009 . Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system . J. Am. Chem. Soc. 131 : 4230 – 4232 .
  • Suzuki , Y. , B. P. Pichon , D. D'elia , C. Beauger , and S. Yoshikawa . 2009 . Preparation and microstructure of titanate nanowire thin films by spray Layer-by-Layer assembly method . J. Ceram. Soc. Japan. 117 : 381 – 384 .
  • Tang , X. , and D. Li . 2008 . Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response . J. Phys. Chem. C. 112 : 5405 – 5409 .
  • Varghese , O. K. , X. Yang , J. Kendig , M. Paulose , K. Zeng , C. Palmer , K. G. Ong , and C. A. Grimes . 2006 . A transcutaneous hydrogen sensor: From design to application . Sensor Lett. 4 : 120 – 128 .
  • Wei , Z. , Z. Liu , R. Jiang , C. Bian , T. Huang , and A. Yu . 2010 . TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries . J. Solid State Electrochem. 14 : 1045 – 1050 .
  • Wilson , J. N. , and C. Z. Marczewski . 1973 . Determination of fluorine in petroleum and petroleum process catalysts with a fluoride electrode . Anal. Chem. 45 : 2409 – 2412 .
  • Xia , M. W. , L. S. Wang , X. J. Huang , Y. D. Wu , and Z. Dang . 2009 . Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties . J. Alloys Comp. 470 : 486 – 491 .
  • Yang , L. , D. He , Q. Cai , and C. A. Grimes . 2007 . Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays . J. Phys. Chem. C. 111 : 8214 – 8217 .
  • Yang , L. X. , S. L. Luo , Q. Y. Cai , and S. Z. Yao . 2010 . A review on TiO2 nanotube arrays: fabrication, properties, and sensing applications . Chin. Sci. Bull. 55 : 331 – 338 .
  • Yeager , J. L. , M. D. Miller , and K. V. Ramanujachary . 2006 . Determination of total fluoride content in electroslag refining fluxes using a fluoride ion-selective electrode . Ind. Eng. Chem. Res. 45 : 4525 – 4529 .
  • Yu , H. , J. Yu , B. Cheng , and M. Zhou . 2006 . Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons . J. Solid State Chem. 179 : 349354 .
  • Zahran , E. M. , Y. Hua , S. Lee , A. H. Flood , and L. G. Bachas . 2011 . Ion-selective electrodes based on a pyridyl-Containing triazolophane: Altering halide selectivity by combining dipole-promoted cooperativity with hydrogen bonding . Anal. Chem. 83 : 3455 – 3461 .
  • Zheng , Q. , B. Zhou , J. Bai , L. Li , Z. Jin , J. Zhang , J. Li , Y. Liu , W. Cai , and X. Zhu . 2008. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20: 1044–1049.
  • Zheng , Q. , H. Kang , J. Yun , J. Lee , J. H. Park , and S. Baik . 2011 . Hierarchical construction of self-Standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells . ACS Nano. 5 : 5088 – 5093 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.