158
Views
3
CrossRef citations to date
0
Altmetric
SENSORS

An Electrochemical Microsensor for the Detection of Nitric Oxide

, , , &
Pages 790-802 | Received 01 Sep 2012, Accepted 01 Oct 2012, Published online: 01 Mar 2013

REFERENCES

  • Alessandro , W. , L. Shinobu , and C. Luigi . 1994 . Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-γ and lipopolysaccharide . J. Biol. Chem. 269 : 8324 – 8333 .
  • Banks , C. E. , and R. G. Compton . 2005 . Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study . Analyst 130 : 1232 – 1239 .
  • Barroso-Bujans , F. , J. L. G. Fierro , S. Rojas , S. Sánchez-Cortes , M. Arroyo , and M. A. López-Manchado . 2007 . Degree of functionalization of carbon nanofibers with benzenesulfonic groups in an acid medium . Carbon 45 : 1669 – 1678 .
  • Butler , A. R. , and D. L. H. Williams . 1993 . The physiological roles of nitric oxide . Chem. Soc. Rev. 22 : 233 – 241 .
  • Cury , Y. , G. Picolo , V. P. Gutierrez , and S. H. Ferreira . 2011 . Pain and analgesia: The dual effect of nitric oxide in the nociceptive system . Nitric Oxide 25 : 243 – 254 .
  • Deng , X. C. , F. Wang , and Z. L. Chen . 2010 . A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues . Talanta 82 : 1218 – 1224 .
  • Dhir , A. , and S. K. Kulkarni . 2011 . Nitric oxide and major depression . Nitric Oxide 24 : 125 – 131 .
  • Dongil , A. B. , B. Bachiller-Baeza , A. Guerrero-Ruiz , I. Rodríguez-Ramos , A. Martínez-Alonso , and J. M. D. Tascón . 2011 . Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments . J. Colloid Interf. Sci. 355 : 179 – 189 .
  • Du , F. Y. , W. H. Huang , Y. X. Shi , Z. L. Wang , and J. K. Cheng . 2008 . Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes . Biosens. Bioelectron. 24 : 415 – 421 .
  • Fei , J. J. , S. S. Hu , and K. K. Shiu . 2011 . Amperometric determination of nitric oxide at a carbon nanotube modified electrode with redox polymer coating . J. Solid State Electrochem. 15 : 519 – 523 .
  • Finnerty , N. J. , S. L. O'Riordan , E. Palsson , and J. P. Lowry . 2012 . Brain nitric oxide: Regional characterisation of a real-time microelectrochemical sensor . J. Neuros. Meth. 209 : 13 – 21 .
  • Friedemann , M. N. , S. W. Robinson , and G. A. Gerhardt . 1996 . o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide . Anal. Chem. 68 : 2621 – 2628 .
  • Gardiner , S. M. , A. M. Compton , P. A. Kemp , and T. Bennett . 1990 . Regional and cardiac hemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats: effects of NG-nitro-L-arginine . Br. J. Pharmacol. 101 : 632 – 639 .
  • Griveau , S. , J. Seguin , D. Scherman , G. G. Chabot , and F. Bedioui . 2009 . In vivo electrochemical detection of nitroglycerin-derived nitric oxide in tumor-bearing mice . Electroanalysis 21 : 631 – 634 .
  • Henning , T. H. , and F. Salama . 1998 . Carbon in the universe . Science 282 : 2204 – 2210 .
  • Kannan , P. , and S. A. John . 2010. Highly sensitive electrochemical determination of nitric oxide using fused spherical gold nanoparticles modified ITO electrode. Electrochim. Acta 55: 3497–3503.
  • Kim , S. F. 2011 . The role of nitric oxide in prostaglandin biology: update . Nitric Oxide 25 : 255 – 264 .
  • Kim , S. U. , and K. H. Lee . 2004 . Carbon nanofiber composites for the electrodes of electrochemical capacitors . Chem. Phys. Lett. 400 : 253 – 257 .
  • Li , C. H. , K. F. Yao , and J. Liang . 2003 . Influence of acid treatments on the activity of carbon nanotube-supported catalysts . Carbon 41 : 858 – 860 .
  • Li , W. , N. D. Hoa , and D. Kim . 2010 . High-performance carbon nanotube hydrogen sensor . Sensor. Actuat. B. 149 : 184 – 188 .
  • Li , X. B. , and M. R. Coleman . 2008 . Functionalization of carbon nanofibers with diamine and polyimide oligmer . Carbon 46 : 1115 – 1125 .
  • Maldonado , S. , and K. J. Stevenson . 2004 . Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: Electrocatalytic aspects for oxygen reduction . J. Phys. Chem. B 108 : 11375 – 11383 .
  • Malinski , T. , Z. Taha , S. Grunfeld , A. Burewicz , P. Tomboulian , and F. Kiechle . 1993 . Measurements of nitric oxide in biological materials using a porphyrinic microsensor . Anal. Chim. Acta 279 : 135 – 140 .
  • Mao , L. Q. , G. Y. Shi , Y. Tian , H. Y. Liu , L. T. Jin , K. Yamamoto , S. G. Tao , and J. Y. Jin . 1998 . A novel thin-layer amperometric detector based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide and nitrite in rat brain combined with in vivo microdialysis . Talanta 46 : 1547 – 1556 .
  • Mapkar , J. A. , G. Iyer , and M. R. Coleman . 2009 . Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry . Appl. Surf. Sci. 255 : 4806 – 4813 .
  • Mas , M. , A. Escrig , and J. L. Gonzalez-Mora . 2002 . In vivo electrochemical measurement of nitric oxide in corpusca vernosum penis . J. Neuros. Meth. 119 : 143 – 150 .
  • Musameh , M. , J. Wang , A. Merkoci , and Y. H. Lin . 2002 . Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes . Electrochem. Commun. 4 : 743 – 746 .
  • Otobe , K. , H. Nakao , H. Hayashi , F. Nihey , M. Yudasaka , and S. Iijima . 2002 . Fluorescence visulization of carbon nanotubes by modification with silicon-based polymer . Nano Lett. 10 : 1157 – 1160 .
  • Park , J. , P. H. Tran , J. K. T. Chao , R. Ghodadra , R. Rangarajan , and N. V. Thakor . 1998 . In vivo nitric oxide sensor using non-conducting polymer-modified carbon fiber . Biosens. Bioelectron. 13 : 1187 – 1195 .
  • Peng , Y. F. , C. G. Hu , D. Y. Zheng , and S. S. Hu . 2008 . A sensitive nitric oxide microsensor based on PBPB composite film-modified carbon fiber microelectrode . Sensor. Actuat. B 133 : 571 – 576 .
  • Peng , Y. F. , Y. P. Ji , D. Y. Zheng , and S. S. Hu . 2009 . In situ monitoring of nitric oxide release from rat kidney at poly(eosin b)-ionic liquid composite-based electrochemical sensors . Sensor. Actuat. B. 137 : 656 – 661 .
  • Privett , B. J. , J. H. Shin , and M. H. Schoenfisch . 2010 . Electrochemical nitric oxide sensors for physiological measurements . Chem. Soc. Rev. 39 : 1925 – 1935 .
  • Rees , D. D. , R. M. Palmer , R. Schulz , H. F. Hodson , and S. Moncada . 1990 . Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo . Br. J. Pharmacol. 101 : 746 – 752 .
  • Salimi , A. , R. G. Compton , and R. Hallaj . 2004 . Glucose biosensor prepared by glucose oxide encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode . Anal. Biochem. 333 : 49 – 56 .
  • Sivanesan , A. , and S. A. John . 2010. Highly sensitive electrochemical sensor for nitric oxide using the self-assembled monolayer of 1,8,15,22-Tetraaminophthalocyanatocobalt (II) on glassy carbon electrode. Electroanalysis 22: 639–644.
  • Stuehr , D. J. , and M. A. Marletta . 1985 . Mammslian nitriate biosynthesis: mouse acrophages produce nitrite and nitate in response to escherichin coli lipopolysaccharide . Proc. Natl. Acad. Sci. USA. 82 : 7738 – 7742 .
  • Tang , X. F. , Y. Liu , H. Q. Hou , and T. Y. You . 2011 . A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode . Talanta 83 : 1410 – 1414 .
  • Trevin , S. , F. Bedioui , and J. Devynck . 1996 . New electropolymerized nickel porphyrin films application to the detection of nitric oxide in aqueous solution . J. Electroanal. Chem. 408 : 261 – 265 .
  • Wang , F. , X. C. Deng , W. Wang , and Z. L. Chen . 2011 . Nitric oxide measurement in biological and pharma ceutical samples by an electrochemical sensor . J. Solid State Electrochem. 15 : 829 – 836 .
  • Wang , J. , and Y. H. Lin . 2008 . Functionalized carbon nanotubes and nanofibers for biosensing applications . Trend. Anal. Chem. 27 : 619 – 626 .
  • Wang , Y. , and P. A. Marsden . 1995 . Nitric oxide synthase: gene structure and regulation . Adv. Pharmacol. 34 : 71 – 90 .
  • Wang , Y. Z. , Q. Li , and S. S. Hu . 2005 . A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria . Bioelectrochemistry 65 : 135 – 142 .
  • Werner , P. , R. Verdejo , F. Wollecke , V. Altstadt , J. K. W. Sandler , and M. S. P. Shaffer . 2005 . Carbon nanofibers allow foaming of semicrystalline poly(ether ether ketone) . Adv. Mater. 17 : 2864 – 2869 .
  • White , D. G. , G. M. Drew , J. M. Gurden , D. M. Penny , A. G. Roach , and I. S. Watts . 1993 . The effect of NG-nitro-L-arginine methyl ester upon basal blood flow and endothelium-dependent vasodilatation in the dog hindlimb . Br. J. Pharmacol. 108 : 763 – 768 .
  • Wu , K. B. , and S. S. Hu . 2004 . Deposition of a thin film of carbon nanotubes onto a glassy carbon electrode by electropolymerization . Carbon 42 : 3237 – 3242 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.