402
Views
44
CrossRef citations to date
0
Altmetric
BIOSENSORS

Amperometric Biosensor Based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil

, , , , , & show all
Pages 2705-2726 | Received 29 Mar 2013, Accepted 27 May 2013, Published online: 15 Oct 2013

REFERENCES

  • Alarcón , F. , M. Isabel , R. Romero-González , A. G. Frenich , and J. L. Martínez Vidal . 2012 . Analysis of phenolic compounds in olive oil by solid-phase extraction and ultra high performance liquid chromatography–tandem mass spectrometry . Food Chem. 134 : 2465 – 2472 .
  • Alcantara , R. , J. M. Jimenez-Mateos , P. Lavela , and J. L. Tirado . 2001 . Carbon black: A promising electrode material for sodium-ion batteries . Electrochem. Comm. 3 : 639 – 642 .
  • Apetrei , C. 2012 . Novel method based on polypyrrole-modified sensors and emulsions for the evaluation of bitterness in extra virgin olive oils . Food Res. Int. 48 ( 2 ): 673 – 680 .
  • Arduini , F. , A. Amine , C. Majorani , F. Di Giorgio , D. De Felicis , F. Cataldo , D. Moscone , and G. Palleschi . 2010 . High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black . Electrochem. Comm. 12 : 346 – 350 .
  • Arduini , F. , F. Di Giorgio , A. Amine , F. Cataldo , D. Moscone , and G. Palleschi . 2010 . Electroanalytical characterization of carbon black nanomaterial paste electrode: development of highly sensitive tyrosinase biosensor for catechol detection . Anal. Lett. 43 : 1688 – 1702 .
  • Arduini , F. , F. Di Nardo , A. Amine , L. Micheli , G. Palleschi , and D. Moscone . 2012. Carbon black-modified screen-printed electrodes as electroanalytical tools. Electroanalysis. 24: 743–751.
  • Arduini , F. , C. Majorani , A. Amine , D. Moscone , and G. Palleschi . 2011 . Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film . Electrochim. Acta 56 : 4209 – 4215 .
  • Arecchi , A. , M. Scampicchio , S. Drusch , and S. Mannino . 2010 . Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds . Anal. Chim. Acta 659 : 133 – 136 .
  • Baldioli , M. , M. Servili , G. Perretti , and G. F. Montedoro . 1996 . Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil . J. Am. Oil Chem. Soc. 73 : 1589 – 1593 .
  • Bendini , A. , A. M. Gómez-Caravaca , L. Cerretani , M. Del Carlo , A. Segura-Carretero , D. Compagnone , A. Cichelli , and G. Lercker . 2007 . Evaluation of contribution of micro and macro components to oxidative stability on virgin oils obtained from olives characterized by different health quality . Progr. Nutr. 9 : 210 – 215 .
  • Boiret , M. , A. Marty , and M. Deumié . 1985 . Distribution of activity of tyrosinase in the mushroom . Biochem. Educ. 13 : 82 – 84 .
  • Capannesi , C. , I. Palchetti , M. Mascini , and A. Parenti . 2000 . Electrochemical sensor and biosensor for polyphenols detection in olive oils . Food Chem. 71 : 553 – 562 .
  • Carralero , V. , M. L. Mena , A. Gonzalez-Cortés , P. Yáñez-Sedeño , and J. M. Pingarrón . 2006 . Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles . Biosensor. Bioelectron. 22 : 730 – 736 .
  • Carralero Sanz , V. , Ma Luz Mena , A. González-Cortés , P. Yáñez-Sedeño , and J. M. Pingarrón . 2005 . Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines . Anal. Chim. Acta 528 : 1 – 8 .
  • Dall'Orto , V. C. , C. Danilowicz , I. Rezzano , M. Del Carlo , and M. Mascini . 1999 . Comparison between three amperometric sensors for phenol determination in olive oil samples . Anal. Lett. 32 : 1981 – 1990 .
  • Del Carlo , M. , A. Amine , M. Haddam , F. della Pelle , G. C. Fusella , and D. Compagnone . 2012 . Selective voltammetric analysis of o-diphenols from olive oil using Na2MoO4 as electrochemical mediator . Electroanalysis. 24 : 889 – 896 .
  • Deng , P. , J. Fei , J. Zhang , and Y. Feng . 2011 . Determination of trace aluminum by anodic adsorptive stripping voltammetry using a multi-walled carbon nanotube modified carbon paste electrode . Anal. Lett. 44 : 1521 – 1535 .
  • Diaconu , M. , S. C. Litescu , and G. L. Radu . 2010 . Laccase-MWCNT-chitosan biosensor-A new tool for total polyphenolic content evaluation from in vitro cultivated plants . Sensor. Actuator B. 145 : 800 – 806 .
  • Dominko , R. , M. Gaberšček , J. Drofenik , M. Bele , and J. Jamnik . 2003 . Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries . Electrochim. Acta. 48 : 3709 – 3716 .
  • ElKaoutit , M. , I. Naranjo-Rodriguez , K. Riffi Temsamani , M. P. Hernández-Artiga , D. Bellido-Milla , and J. L. Hidalgo-Hidalgo de Cisneros . 2008 . A comparison of three amperometric phenoloxidase–Sonogel–Carbon based biosensors for determination of polyphenols in beers . Food Chem. 110 : 1019 – 1024 .
  • Enache , T. , A. Amine , C. M. A. Brett , and A. M. Oliveira-Brett . 2013 . Virgin olive oil ortho-phenols-electroanalytical quantification . Talanta 105 ( 0 ): 179 – 186 .
  • Fitó , M. , M. Cladellas , R. de la Torre , J. Martí , M. Alcántara , M. Pujadas-Bastardes , et al.. 2005. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: A randomized, crossover, controlled, clinical trial. Atherosclerosis. 181: 149–158.
  • Gómez-Alonzo , S. , M. Desamparados Salvador , and G. Fregapane . 2002 . Phenolic compounds profile of cornicabra virgin olive oil . J. Agric. Food Chem. 50 : 6812 – 6817 .
  • Gouzi , H. , and A. Benmansour . 2007 . Partial purification and characterization of polyphenol oxidase extracted from Agaricus bisporus (J.E. Lange) imbach . Int. J. Chem. Reactor Eng. 5 : 1542 – 6580 .
  • Granero , A. M. , H. Fernández , E. Agostini , and M. A. Zón . 2010 . An amperometric biosensor based on peroxidases from Brassica napus for the determination of the total polyphenolic content in wine and tea samples . Talanta. 83 : 249 – 255 .
  • Gutfinger , T. 1981 . Polyphenols in olive oils . J. Am. Oil Chem. Soc. 58 ( 11 ): 966 .
  • Han , R. , L. Cui , S. Ai , H. Yin , X. Liu , and Y. Qiu . 2012 . Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols . J. Solid State Electrochem. 16 : 449 – 456 .
  • Hervás Pérez , J. P. , M. Sánchez-Paniagua López , E. López-Cabarcos , and B. López-Ruiz . 2006 . Amperometric tyrosinase biosensor based on polyacrylamide microgels . Biosens. Bioelectron. 22 : 429 – 439 .
  • Hočevar , S. B. , and B. R. Ogorevc . 2007 . Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles . Talanta. 74 : 405 – 411 .
  • Hopkin , A. R. , and N. H. Lewis . 2001 . Detection and classification characteristics of arrays of carbon black = organic polymer composite chemiresistive vapor detectors for the nerve agent stimulants dimethylmethylphosphonate and diisopropylmethylphosphonate . Anal. Chem. 73 : 884 – 892 .
  • Huang , T. H. , T. Kuwana , and A. Warsinke . 2002 . Analysis of thiols with tyrosinase-modified carbon paste electrodes based on blocking of substrate recycling . Biosensor Bioelectron. 17 : 1107 – 1113 .
  • Ilavarasi , K. , P. Vijayaraman Kiruthiga , S. K. Pandian , and K. Pandima Devi . 2011 . Hydroxytyrosol, the phenolic compound of olive oil protects human PBMC against oxidative stress and DNA damage mediated by 2,3,7,8-TCDD . Chemosphere. 84 : 888 – 893 .
  • Jiménez , M. S. , R. Velarte , and J. R. Castillo . 2007 . Direct determination of phenolic compounds and phospholipids in virgin olive oil by micellar liquid chromatography . Food Chem. 100 : 8 – 14 .
  • Kim , G. Y. , N. Manh Cuong , S. H. Cho , J. Shim , J. J. Woo , and S. H. Moon . 2007 . Improvement of an enzyme electrode by poly(vinyl alcohol) coating for amperometric measurement of phenol . Talanta. 71 : 129 – 135 .
  • Kulys , J. , and R. Vidziunaite . 2003 . Amperometric biosensors based on recombinant laccases for phenols determination . Biosensor Bioelectron. 18 : 319 – 325 .
  • Kurusu , F. , S. Koide , I. Karube , and M. Gotoh . 2006 . Electrocatalytic activity of bamboo‐structured carbon nanotubes paste electrode toward hydrogen peroxide . Anal. Lett. 39 : 903 – 911 .
  • Li , J. , L. S. Chia , N. K. Goh , and S. N. Tan . 1998 . Silica sol–gel immobilized amperometric biosensor for the determination of phenolic compounds . Anal. Chim. Acta. 362 : 203 – 211 .
  • Li , Y. F. , Z. M. Liu , Y. L. Liu , Y. H. Yang , G. L. Shen , and R. Q. Yu . 2006 . A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles . Anal. Biochem. 349 : 33 – 40 .
  • Liberti , A. , C. Morgia , and M. Mascini . 1985 . Graphitized carbon black in polyethylene as an electrochemical sensor . Anal. Chim. Acta. 173 ( 0 ): 157 – 164 .
  • Liu , S. , J. Yu , and H. Ju . 2003 . Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode . J. Electroanal. Chem. 540 : 61 – 67 .
  • Liu , Z. , Y. Liu , H. Yang , Y. Yang , G. Shen , and R. Yu . 2005. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Anal. Chim. Acta. 533: 3–9.
  • Martinez-Alvarez , M. , and O. Miranda-Hernandez . 2008 . Characterization of carbon pastes as matrices in composite electrodes for use in electrochemical capacitors . Carbon: Sci. Technol. 1 : 30 – 38 .
  • Mello , L. D. , M. Del Pilar Taboada Sotomayor , and L. T. Kubota . 2003 . HRP-based amperometric biosensor for the polyphenols determination in vegetables extract . Sensor Actuator B 96 : 636 – 645 .
  • Mita , D. G. , A. Attanasio , F. Arduini , N. Diano , V. Grano , U. Bencivenga , S. Rossi , A. Amine , and D. Moscone . 2007 . Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers . Biosens. Bioelectron. 23 : 60 – 65 .
  • Mosca , L. , C. De Marco , F. Visioli , and C. Cannella . 2000 . Enzymatic assay for the determination of olive oil polyphenol content: Assay Conditions and validation of the method . J. Agr. Food Chem. 48 : 297 – 301 .
  • Nistor , C. , J. Emnéus , L. Gorton , and A. Ciucu . 1999 . Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds . Anal. Chim. Acta 387 : 309 – 326 .
  • Odiatou , E. M. , A. Skaltsounis , and A. I. Constantinou . 2013 . Identification of the factors responsible for the in vitro pro-oxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol . Canc. Lett. 330 : 113 – 121 .
  • Olson , C. , and R. N. Adams . 1960 . Carbon paste electrodes application to anodic voltammetry . Anal. Chim. Acta. 22 : 582 – 589 .
  • Owen , R. W. , R. Haubner , G. Würtele , W. E. Hull , B. Spiegelhalder , and H. Bartsch . 2004 . Olives and olive oil in cancer prevention . Eur. J. Canc. Prev. 13 : 319 – 326 .
  • Ozoner , S. K. , M. Yalvac , and E. Erhan . 2010 . Flow injection determination of catechol based on polypyrrole–carbon nanotube–tyrosinase biocomposite detector . Curr. Appl. Phys. 10 : 323 – 328 .
  • Ozoner , S. K. , F. Yilmaz , A. Celik , B. Keskinler , and E. Erhan . 2011 . A novel poly(glycine methacrylate-co-3-thienylmethyl methacrylate)-polypyrrole-carbon nanotube-horseradish peroxidase composite film electrode for the detection of phenolic compounds . Curr. Appl. Phys. 11 : 402 – 408 .
  • Popescu , I. C. , G. Zetterberg , and L. Gorton . 1995 . Influence of graphite powder, additives and enzyme immobilization procedures on a mediatorless HRP-modified carbon paste electrode for amperometric flow-injection detection of H2O2 . Biosens. Bioelectron. 10 : 443 – 461 .
  • Razumiene , J. , J. Barkauskas , V. Kubilius , R. Meškys , and V. Laurinavičius . 2005 . Modified graphitized carbon black as transducing material for reagentless H2O2 and enzyme sensors . Talanta. 67 : 783 – 790 .
  • Ricci , F. , C. Gonçalves , A. Amine , L. Gorton , G. Palleschi , and D. Moscone . 2003 . Electroanalytical study of Prussian Blue modified glassy carbon paste electrodes . Electroanalysis. 15 : 1204 – 1211 .
  • Rodríguez-Méndez , M. L. , C. Apetrei , and J. A. de Saja . 2008 . Evaluation of the polyphenolic content of extra virgin olive oils using an array of voltammetric sensors . Electrochim. Acta 53 ( 20 ): 5867 – 5872 .
  • Romani , A. , M. Minunni , N. Mulinacci , P. Pinelli , F. F. Vincieri , M. Del Carlo , and M. Mascini . 2000 . Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination . J. Agricul. Food Chem. 48 : 1197 – 1203 .
  • Ruiz-Canela , M. , and M. A. Martínez-González . 2011 . Olive oil in the primary prevention of cardiovascular disease . Maturitas. 68 : 245 – 250 .
  • Sánchez-Ferrer , Á. , J. N. Rodríguez-López , F. García-Cánovas , and F. García-Carmona . 1995. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta (BBA) 1247: 1–11.
  • Serra , B. , S. Jiménez , M. L. Mena , A. J. Reviejo , and J. M. Pingarrón . 2002 . Composite electrochemical biosensors: A comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors . Biosens. Bioelectron. 17 : 217 – 226 .
  • Singleton , V. L. , and J. A. Rossi . 1965 . Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents . Am. J. Enol. Viticul. 16 : 144 – 158 .
  • Švancara , I. , M. Hvízdalová , K. Vytřas , K. Kalcher , and R. Novotný . 1996 . A microscopic study on carbon paste electrodes . Electroanalysis. 8 : 61 – 65 .
  • Tan , Y. , J. Kan , and S. Li . 2011 . Amperometric biosensor for catechol using electrochemical template process . Sens. Actuators B 152 : 285 – 291 .
  • Tsimidou , M. , G. Papadopoulos , and D. Boskou . 1992 . Determination of phenolic compounds in virgin olive oil by reversed-phase HPLC with emphasis on UV detection . Food Chem. 44 : 53 – 60 .
  • Urpi-Sarda , M. , R. Casas , G. Chiva-Blanch , E. Saúl Romero-Mamani , P. Valderas-Martínez , S. Arranz , et al. . 2012 . Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis . Pharmacol. Res. 65 : 577 – 583 .
  • Valentini , F. , A. Amine , S. Orlanducci , M. Letizia Terranova , and G. Palleschi . 2003 . Carbon nanotube purification: Preparation and characterization of carbon nanotube paste electrodes . Anal. Chem. 75 : 5413 – 5421 .
  • Visioli , F. , G. Bellomo , and C. Galli . 1998 . Free radical-scavenging properties of olive oil polyphenols . Biochem. Biophys. Res. Comm. 247 : 60 – 64 .
  • Visioli , F. , and C. Galli . 1994 . Oleuropein protects low density lipoprotein from oxidation . Life Sci. 55 : 1965 – 1971 .
  • Wang , B. , J. Zhang , and S. Dong . 2000 . Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor . Biosens Bioelectron. 15 : 397 – 402 .
  • Xuzhi , Z. , Y. Cui , Z. Lv , M. Li , S. Ma , Z. Cui , and Q. Kong . 2011 . Carbon nanotubes, conductive carbon black and graphite powder based paste electrodes . J. Electrochem. Sci. 6 : 6063 – 6073 .
  • Yabuki , S. , and F. Mizutani . 1995 . Modifications to a carbon paste glucose-sensing enzyme electrode and a reduction in the electrochemical interference from L-ascorbate . Biosensors. Bioelectron. 10 : 353 – 358 .
  • Yang , L. , H. Xiong , X. Zhang , and S. Wang . 2012 . A novel tyrosinase biosensor based on chitosan-carbon-coated nickel nanocomposite film . Bioelectrochemistry 84 : 44 – 48 .
  • Yildiz , H. B. , J. Castillo , D. A. Guschin , L. Toppare , and W. Schuhmann . 2007 . Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer . Microchim. Acta. 159 : 27 – 34 .
  • Zejli , H. , J. L. Hidalgo-Hidalgo de Cisneros , I. Naranjo-Rodriguez , B. Liu , K. R. Temsamani , and J. L. Marty . 2008 . Phenol biosensor based on Sonogel-Carbon transducer with tyrosinase alumina sol–gel immobilization . Anal. Chim. Acta 612 ( 2 ): 198 – 203 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.