288
Views
24
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Detection of Epinephrine Using an L-Glutamic Acid Functionalized Graphene Modified Electrode

, &
Pages 1552-1563 | Received 08 Oct 2013, Accepted 12 Dec 2013, Published online: 02 Jun 2014

REFERENCES

  • Atta , N. F. , A. Galal , and E. H. El-Ads . 2012 . A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate . Analyst 137 : 2658 – 2668 .
  • Banks , W. A. 2001 . Enhanced leptin transport across the blood-brain barrier by α -adrenergic agents . Brain Res. 899 : 209 – 217 .
  • Chen , D. , L. H. Tang , and J. H. Li . 2010 . Graphene-based materials in electrochemistry . Chem. Soc. Rev. 39 : 3157 – 3180 .
  • Chen , L. Y. , Y. H. Tang , K. Wang , C. B. Liu , and S. L. Luo . 2011 . Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application . Electrochem. Commun. 13 : 133 – 137 .
  • Cui , F. , and X. L. Zhang . 2012 . Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites . J. Electroanal. Chem. 669 : 35 – 41 .
  • Du , J. X. , L. H. Shen , and J. R. Lu . 2003 . Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material . Anal. Chim. Acta. 489 : 183 – 189 .
  • Ghica , M. E. , and C. M. A. Brett . 2013 . Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes . Anal. Lett. 46 : 1379 – 1393 .
  • Goyal , R. N. , and S. Bishnoi . 2011 . Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode . Talanta 84 : 78 – 83 .
  • Hu , W. N. , D. M. Sun , and W. Ma . 2008 . Simultaneous electrochemical determination of dopamine and epinephrine with a silver-doped Poly(L-glutamic acid) modified electrode . Chem. Anal. (Warsaw) 53 : 703 – 716 .
  • Jones , M. , C. Meijen , P. J. McCarthy , and D. Sheffield . 2009 . A theory of challenge and threat states in athletes . Int. Rev. Sport Exercise Psy. 2 : 161 – 180 .
  • Kong , L. , X. Y. Jiang , Y. B. Zeng , T. S. Zhou , and G. Y. Shi . 2013 . Molecularly imprinted sensor based on electropolmerized poly(o-phenylenediamine) membranes at reduced graphene oxide modified electrode for imidacloprid determination . Sens. Actuators. B 185 : 424 – 431 .
  • Li , X. , M. F. Chen , and X. Y. Ma . 2012. Selective determination of epinephrine in the presence of ascorbic acid using a glassy carbon electrode modified with graphene. Anal. Sci. 28: 147–151.
  • Łuczak , T. 2009 . Comparison of electrochemical oxidation of epinephrine in the presence of interfering ascorbic and uric acids on gold electrodes modified with S-functionalized compounds and gold nanoparticles . Electrochim. Acta 54 : 5863 – 5870 .
  • Mao , K. , D. Wu , Y. Li , H. Ma , Z. Ni , H. Yu , C. Luo , Q. Wei , and B. Du . 2012 . Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite . Anal. Biochem. 422 ( 1 ): 22 – 27 .
  • Mazloum-Ardakani , M. , H. Beitollahi , M. K. Amini , B-F. Mirjalili , and F. Mirkhalaf . 2011 . Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1, 3-dithiane self-assembled monolayer . J. Electroanal. Chem. 651 : 243 – 249 .
  • Mazloum-Ardakani , M. , H. Beitollahi , B. F. Mirjalili , and A. Akbari . 2012 . Determination of epinephrine in the presence of uric acid and folic acid using nanostructure-based electrochemical sensor . J. Nanostructures 1 : 181 – 190 .
  • Oka , K. , M. Sekiya , H. Osada , K. Fujita , T. Kato , and T. Nagatsu . 1982 . Simultaneous fluorometry of urinary dopamine, norepinephrine, and epinephrine compared with Liquid Chromatography with electrochemical detection . Clin. Chem. 28 : 646 – 649 .
  • Pihel , K. , T. J. Schroeder , and R. M. Wightman . 1994 . Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single Bovine adrenal medullary cells . Anal. Chem. 66 : 4532 – 4537 .
  • Pumera , M. 2010 . Graphene-based nanomaterials and their electrochemistry . Chem. Soc. Rev. 39 : 4146 – 4157 .
  • Ren , W. , H. Q. Luo , and N. B. Li . 2006 . Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid . Biosens. Bioelectron. 21 : 1086 – 1092 .
  • Saby , C. , B. Ortiz , G. Y. Champagne , and D. Bélanger . 1997 . Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups . Langmuir 13 ( 25 ): 6805 – 6813.
  • Shan , C. S. , H. F. Yang , D. X. Han , Q. X. Zhang , A. Ivaska , and L. Niu . 2009 . Water-soluble graphene covalently functionalized by biocompatible Poly-L-lysine . Langmuir 25 ( 20 ): 12030 – 12033 .
  • Shan , C. S. , H. F. Yang , J. F. Song , D. X. Han , Q. X. Zhang , A. Ivaska , and L. Niu . 2009 . Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene . Anal. Chem. 81 : 2378 – 2382 .
  • Shao , Y. Y. , J. Wang , M. Engelhard , C. M. Wang , and Y. H. Lin , 2010 . Facile and controllable electrochemical reduction of graphene oxide and its applications . J. Mater. Chem. 20 : 743 – 748 .
  • Sun , Y. X. , S. F. Wang , X. H. Zhang , and Y. F. Huang . 2006 . Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode . Sensor. Actuat. B 113 : 156 – 161 .
  • Thomas , T. , R. J. Mascarenhas , P. Martis , Z. Mekhalif , and B. E. Kumara Swamy . 2013 . Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid . Mat. Sci. Eng. C. 33 : 3294 – 3302 .
  • Wallingford , R. A. , and A. G. Ewing . 1987 . Capillary zone electrophoresis with electrochemical detection . Anal. Che. 59 : 1762 – 1766 .
  • Wang , S. F. , D. Du , and Q. C. Zou . 2002 . Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode . Talanta 57 : 687 – 692 .
  • Wei , W. L. , K. G. Qu , J. S. Ren , and X. G. Qu . 2011 . Chiral detection using reusable fluorescent amylase functionalized graphene . Chem. Sci. 2 : 2050 – 2056 .
  • Yuan , Y. L. , X. X. Gou , R. Yuan , Y. Q. Chai , Y. Zhuo , X. Y. Ye , and X. X. Gan . 2011. Graphene-promoted 3,4,9,10-perylenetetracarboxylic acid nanocomposite as redox probe in label-free electrochemical aptasensor. Biosens. Bioelectron. 30: 123–127.
  • Zhang , H. M. , X. L. Zhou , R. T. Hui , N. Q. Li , and D. P. Liu . 2002 . Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode . Talanta 56 : 1081 – 1088 .
  • Zhang , Q. , Y. Qiao , F. Hao , L. Zhang , S. Y. Wu , Y. Li , J. H. Li , and X. M. Song . 2010 . Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis . Chem. Eur. J. 16 : 8133 – 8139 .
  • Zhou , M. , Y. M. Zhai , and S. J. Dong . 2009 . Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide . Anal. Chem. 81 : 5603 – 5613 .
  • Zhu , C. Z. , S. J. Guo , Y. X. Fang , and S. J. Dong . 2010 . Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets . ACS nano. 4 ( 4 ): 2429 – 2437 .
  • Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.