397
Views
21
CrossRef citations to date
0
Altmetric
SENSORS

An Electrochemical Sensor for L-Tryptophan Using a Molecularly Imprinted Polymer Film Produced by Copolymerization of o-Phenylenediamine and Hydroquinone

, , , &
Pages 1712-1725 | Received 20 Nov 2013, Accepted 24 Dec 2013, Published online: 26 Jun 2014

REFERENCES

  • Aghaei , A. , M. R. M. Hosseini , and M. Najafi . 2010 . A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer . Electrochimica Acta 5 : 1503 – 1508 .
  • Andrea , P. , S. Miroslav , S. Silvia , and M. Stanislav . 2001 . A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry . Sensor Actuat B-Chem. 76 : 286 – 294 .
  • Costin , J. W. , P. S. Francis , and S. W. Lewis . 2003 . Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection . Anal. Chim. Acta 480 : 67 – 77 .
  • Delgado-Andrade , C. , J. A. Rufián-Henares , S. Jiménez-Pérez , and F. J. Morales . 2006 . Tryptophan determination in milk-based ingredients and dried sport supplements by liquid chromatography with fluorescence detection . Food Chem. 98 : 580 – 585 .
  • D'Souza , O. J. , R. J. Mascarenhas , T. Thomas , I. N. N. Namboothiri , M. Rajamathi , P. Martis , and J. Dalhalle . 2013 . Electrochemical determination of L-Tryptophan based on a multiwall carbon nanotube/Mg–Al layered double hydroxide modified carbon paste electrode as a sensor . J. Electroanal. Chem. 704 : 220 – 226 .
  • Goyal , R. N. , S. Bishnoi , H. Chasta , M. A. Aziz , and M. Oyama . 2011 . Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan . Talanta 85 : 2626 – 2631 .
  • Holthoff , E. L. , and F. V. Bright . 2007 . Molecularly templated materials in chemical sensing . Anal. Chim. Acta 594 : 147 – 161 .
  • Hong , S. J. , L. Y. S. Lee , M. H. So , and K. Y. Wong . 2013. A dopamine electrochemical sensor based on molecularly imprinted poly(acrylamidophenylboronic acid) film. Electroanalysis 25: 1085–1094.
  • Huang , G. G. , M. L. Cheng , and J. Yang . 2011 . Metal ion-assisted infrared optical sensor for selective determination of tryptophan in urine samples . J. Chin. Chem. Soc. 58 : 435 – 442 .
  • Huang , K. J. , C. X. Xu , W. Z. Xie , and W. Wang . 2009 . Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode . Colloid Surf. B 74 : 167 – 171 .
  • Jin , G. P. , X. Peng , and Q. Z. Chen . 2008 . Preparation of novel arrays silver nanoparticles modified polyrutin coat-paraffin-impregnated graphite electrode for tyrosine and tryptophan's oxidation . Electroanalysis 20 : 907 – 915 .
  • Li , J. H. , D. Z. Kuang , Y. L. Feng , F. X. Zhang , Z. F. Xu , M. Q. Liu , and D. P. Wang . 2013 . Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan . Biosens. Bioelectron. 42 : 198 – 206 .
  • Lucci , P. , D. Derrien , F. Alix , C. Pérollier , and S. Bayoudh . 2010 . Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts . Anal. Chim. Acta 672 : 15 – 19 .
  • Markowitz , M. A. , P. R. Kust , G. Deng , P. E. Schoen , J. S. Dordick , D. S. Clark , and B. P. Gaber . 2000 . Catalytic silica particles via template-directed molecular imprinting . Langmuir 16 : 1759 – 1765 .
  • Matsui , J. , M. Higashi , and T. Takeuchi . 2000 . Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center . J. Am. Chem. Soc. 122 : 5218 – 5219 .
  • Mirrahimi , F. , M. A. Taher , H. Beitollahi , and R. Hosseinzadeh . 2012 . Electrocatalytic and selective determination of D-penicillamine in the presence of tryptophan using a benzoylferrocene-modified carbon nanotube paste electrode . Appl. Organomet. Chem. 26 : 194 – 198 .
  • Nozal , M. J. , J. L. Bernal , M. L. Toribio , J. C. Diego , and A. Ruiz . 2004 . Rapid and sensitive method for determining free amino acids in honey by gas chromatography with flame ionization or mass spectrometric detection . J. Chromatogr. A 1047 : 137 – 146 .
  • Pardieu , E. , H. Cheap , C. Vedrine , M. Lazerges , Y. Lattach , F. Garnier , S. Remita , and C. Pernelle . 2009 . Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine . Anal. Chim. Acta 649 : 236 – 245 .
  • Prasad , B. B. , R. Madhuri , M. P. Tiwari , and P. S. Sharma . 2010 . Enantioselective recognition of D- and L-tryptophan by imprinted polymer-carbon composite fiber sensor . Talanta 81 : 187 – 196 .
  • Prasad , B. B. , A. Prasad , and M. P. Tiwari . 2013 . Highly selective and sensitive analysis of γ-aminobutyric acid using a new molecularly imprinted polymer modified at the surface of abrasively immobilized multi-walled carbon nanotubes on pencil graphite electrode . Electrochimica Acta 102 : 400 – 408 .
  • Raoof , J. B. , R. Ojani , and H. Karimi-Maleh . 2008 . Carbon paste electrode incorporating 1-[4-(Ferrocenyl Ethynyl) phenyl]-1-ethanone for electrocatalytic and voltammetric determination of Tryptophan . Electroanalysis 20 : 1259 – 1262 .
  • Reynolds , D. M. 2003 . Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy . Water Res. 37 : 3055 – 3060 .
  • Schweitz , L. 2002 . Molecularly imprinted polymer coatings for open-tubular capillary electrochromatography prepared by surface initiation . Anal. Chem. 74 : 1192 – 1196 .
  • Shahrokhian , S. , and L. Fotouhi . 2007 . Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan . Sensor Actuat B-Chem. 123 : 942 – 949 .
  • Simionato , A. V. C. , E. P. Moraes , E. Carrilho , M. F. M. Tavares , and E. Kenndler . 2008. Determination of amino acids by capillary electrophoresis-electrospray ionization-mass spectrometry: An evaluation of different protein hydrolysis procedures. Electrophoresis 29: 2051–2058.
  • Spivak , D. , and K. J. Shea . 1999 . Molecular imprinting of carboxylic acids employing novel functional macroporous polymers . J. Org. Chem. 64 : 4627 – 4634 .
  • Szunerits , S. , Y. Coffinier , E. Galopin , J. Brenner , and R. Boukherroub . 2010 . Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan . Electrochem. Commun. 12 : 438 – 441 .
  • Tang , X. F. , Y. Liu , H. Q. Hou , and T. Y. You . 2010 . Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode . Talanta 80 : 2182 – 2186 .
  • Thomas , T. , R. J. Mascarenhas , O. J. D'Souza , P. Martis , J. Dalhalle , and B. E. K. Swamy . 2013 . Multi-walled carbon nanotube modified carbon paste electrode as a sensor for the amperometric detection ofL-tryptophan in biological samples . J. Colloid Interface Sci. 402 : 223 – 229 .
  • Windmiller , J. R. , and J. Wang . 2013 . Wearable electrochemical sensors and biosensors: A review . Electroanalysis 25 : 29 – 46 .
  • Wulff , G. 1995 . Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies . Angew. Chem.-Int. Edit. 34 : 1812 – 1832 .
  • Xie , C. G. , H. F. Li , S. Q. Li , J. Wu , and Z. P. Zhang . 2010 . Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode . Anal. Chem. 82 : 241 – 249 .
  • Xu , W. , X. Li , W. Y. Zhang , and X. G. Ying . 2012 . Preparation and performance of sensing films of molecularly imprinted electrochemical sensor for L-tryptophan . Chem. J. Chinese U. 33 : 2199 – 2204 .
  • Yano , K. , and I. Karube . 1999 . Molecularly imprinted polymers for biosensor applications . Trends Anal. Chem. 18 : 199 – 204 .
  • You , J. , Y. Shan , L. Zhen , L. Zhang , and Y. Zhang . 2003 . Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry . Anal. Biochem. 313 : 17 – 27 .
  • Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.