126
Views
0
CrossRef citations to date
0
Altmetric
MASS SPECTROMETRY

Determination of Metabolites in the Cerebellum of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposed Mice by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

, &
Pages 594-604 | Received 12 Mar 2014, Accepted 01 Aug 2014, Published online: 01 Oct 2014

REFERENCES

  • Aoki, J. 2004. Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15: 477–489.
  • Bacich, D. J., K. M. Wozniak, X. C. Lu, D. S. O'Keefe, N. Callizot, W. D. Heston, and B. S. Slusher. 2005. Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury. J. Neurochem. 95: 314–323.
  • Bock, K. W., and C. Kohle. 2006. Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem. Pharmacol. 72: 393–404.
  • Byers, J. P., K. Masters, J. G. Sarver, and E. A. Hassoun. 2006. Association between the levels of biogenic amines and superoxide anion production in brain regions of rats after subchronic exposure to TCDD. Toxicology. 228: 291–298.
  • Carozzi, V. A., A. Chiorazzi, A. Canta, R. G. Lapidus, B. S. Slusher, K. M. Wozniak, and G. Cavaletti. 2010. Glutamate carboxypeptidase inhibition reduces the severity of chemotherapy-induced peripheral neurotoxicity in rat. Neurotox. Res. 17: 380–391.
  • Collins, L. L., M. A. Williamson, B. D. Thompson, D. P. Dever, T. A. Gasiewicz, and L. A. Opanashuk. 2008. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum. Toxicol. Sci. 103: 125–136.
  • Cucullo, L., K. Hallene, G. Dini, R. Dal Toso, and D. Janigro. 2004. Glycerophosphoinositol and dexamethasone improve transendothelial electrical resistance in an in vitro study of the blood-brain barrier. Brain Res. 997: 147–151.
  • Ferro, E., and L. Trabalzini. 2010. RalGDS family members couple Ras to Ral signalling and that's not all. Cell Signal. 22: 1804–1810.
  • Forgacs, A. L., M. N. Kent, M. K. Makley, B. Mets, N. DelRaso, G. L. Jahns, L. D. Burgoon, T. R. Zacharewski, and N. V. Reo. 2012. Comparative metabolomic and genomic analyses of TCDD-elicited metabolic disruption in mouse and rat liver. Toxicol Sci. 125: 41–55.
  • Haarmann-Stemmann, T., H. Bothe, and J. Abel. 2009. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem. Pharmacol. 77: 508–520.
  • Hassoun, E. A., J. Vodhanel, and A. Abushaban. 2004. The modulatory effects of ellagic acid and vitamin E succinate on TCDD-induced oxidative stress in different brain regions of rats after subchronic exposure. J. Biochem. Mol. Toxicol. 18: 196–203.
  • Hofer, R., I. Briesen, M. Beck, F. Pinot, L. Schreiber, and R. Franke. 2008. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J. Exp. Bot. 59: 2347–2360.
  • Hsu, E. L., D. Yoon, H. H. Choi, F. Wang, R. T. Taylor, N. Chen, R. Zhang, and O. Hankinson. 2007. A proposed mechanism for the protective effect of dioxin against breast cancer. Toxicol. Sci. 98: 436–444.
  • Jennen, D., A. Ruiz-Aracama, C. Magkoufopoulou, A. Peijnenburg, A. Lommen, J. van Delft, and J. Kleinjans. 2011. Integrating transcriptomics and metabonomics to unravel modes-of-action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells. BMC Syst. Biol. 5: 139.
  • Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27–30.
  • Koller, K. J., R. Zaczek, and J. T. Coyle. 1984. N-acetyl-aspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J. Neurochem. 43: 1136–1142.
  • Laine, J., S. Bourgoin, J. Bourassa, and J. Morisset. 2000. Subcellular distribution and characterization of rat pancreatic phospholipase D isoforms. Pancreas. 20: 323–336.
  • Lin, S., B. Kanawati, H. D. Liu, M. Witting, M. Li, J. Huang, P. Schmitt-Kopplin, and Z. Cai. 2014. Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models. Talanta. 118: 45–53.
  • Lu, C., Y. Wang, Z. Sheng, G. Liu, Z. Fu, J. Zhao, J. Zhao, X. Yan, B. Zhu, and S. Peng. 2010. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats. Toxicol. Appl. Pharmacol. 248: 178–184.
  • Luo, J. Q., X. Liu, P. Frankel, T. Rotunda, M. Ramos, J. Flom, H. Jiang,. 1998. Functional association between Arf and RalA in active phospholipase D complex. Proc. Natl. Acad. Sci. USA. 95: 3632–3637.
  • Natali, F., L. Siculella, S. Salvati, and G. V. Gnoni. 2007. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J. Lipid. Res. 48: 1966–1975.
  • Neale, J. H., T. Bzdega, and B. Wroblewska. 2000. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J. Neurochem. 75: 443–452.
  • Park, R., D. H Kim, M. S. Kim, H. S. So, H. T. Chung, K. B. Kwon,, D. G. Ryu, and B. R. Kim. 1998. Association of Shc, Cbl, Grb2, and Sos following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin in primary rat hepatocytes. Biochem. Biophys. Res. Commun. 253: 577–581.
  • Park, S. H., H. Lee, K. K. Park, H. W. Kim, and T. Park. 2006. Taurine-responsive genes related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J. Med. Food. 9: 33–41.
  • Pierre, S., A. S. Bats, A. Chevallier, L. C. Bui, A. Ambolet-Camoit, M. Garlatti, M. Aggerbeck, R. Barouki, and X. Coumoul. 2011. Induction of the ras activator son of sevenless 1 by environmental pollutants mediates their effects on cellular proliferation. Biochem. Pharmacol. 81: 304–313.
  • Pohjanvirta, R., M. R. Hirvonen, M. Unkila, K. Savolainen, and J. Tuomisto. 1994. TCDD decreases brain inositol concentrations in the rat. Toxicol. Lett. 70: 363–372.
  • Randi, A. S., M. S. Sanchez, L. Alvarez, J. Cardozo, C. Pontillo, and D. L. Kleiman de Pisarev. 2008. Hexachlorobenzene triggers AhR translocation to the nucleus, c-Src activation and EGFR transactivation in rat liver. Toxicol Lett. 177: 116–122.
  • Ruiz-Aracama, A., A. Peijnenburg, J. Kleinjans, D. Jennen, J. van Delft, C. Hellfrisch, and A. Lommen. 2011. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics. 12: 251.
  • Russell, D. W. 2003. The enzymes, regulation, and genetics of bile acid synthesis. Ann. Rev. Biochem. 72: 137–174.
  • Sacerdoti, D., A. Gatta, and J. C. McGiff. 2003. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat. 72: 51–71.
  • Smith, C. A., G. O'Maille, E. J. Want, C. Qin, S. A. Trauger, T. R. Brandon, D. E. Custodio, R. Abagyan, and G. Siuzdak. 2005. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 27: 747–751.
  • Tuomisto, J., R. Pohjanvirta, E. MacDonald, and L. Tuomisto. 1990. Changes in rat brain monoamines, monoamine metabolites and histamine after a single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Pharmacol Toxicol. 67: 260–265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.