577
Views
18
CrossRef citations to date
0
Altmetric
Sensors

Colorimetric Determination of Lead Using Gold Nanoparticles

, , , &
Pages 766-782 | Received 25 Apr 2014, Accepted 31 Aug 2014, Published online: 31 Dec 2014

REFERENCES

  • Apyari, V. V., S. G. Dmitrienko, V. V. Arkhipova, A. G. Atnagulov, and Y. A. Zolotov. 2012. Determination of cysteamine using label-free gold nanoparticles. Anal. Meth. 4(10): 3193–3199.
  • Apyari, V. V., S. G. Dmitrienko, V. V. Arkhipova, A. G. Atnagulov, M. V. Gorbunova, and Y. A. Zolotov. 2013. Label-free gold nanoparticles for the determination of neomycin. Spectrochim. Acta, Part A. 115: 416–420.
  • Aragay, G., J. Pons, and A. Merkoci. 2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111(5): 3433–3458.
  • Cai, H.-H., D. Lin, J. Wang, P.-H. Yang, and J. Cai. 2014. Controlled side-by-side assembly of gold nanorods: A strategy for lead detection. Sens. Actuators, B. 196: 252–259.
  • Cao, H., M. Wei, Z. Chen, and Y. Huang. 2013. Dithiocarbamate-capped silver nanoparticles as a resonance light scattering probe for simultaneous detection of lead(II) ions and cysteine. Analyst. 138(8): 2420–2426.
  • Casas, J. S., and J. Sordo. 2006. Lead: Chemistry, analytical aspects, environmental impact and health effects. Amsterdam/Boston: Elsevier.
  • Chung, C. H., J. H. Kim, J. Jung, and B. H. Chung. 2013. Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens. Bioelectron. 41: 827–832.
  • Council of the European Communities (CEC). 2000. Directive 2000/60/EC of the European Parliament and of the Council of the 23 October 2000 establishing a framework for Community action in the field of water policy (2000/60/EC). O.J. L 327/70. Luxembourg: Publications Office of the European Union.
  • Darbha, G. K., A. K. Singh, U. S. Rai, E. Yu, H. Yu, and P. Chandra Ray. 2008. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130(25): 8038–8043.
  • EFSA. 2010. European Food Safety Authority. Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on lead in food. EFSA J. 8(4): 1570.
  • Fioresi, M., M. R. Simoes, L. B. Furieri, G. B. Broseghini-Filho, M. V. A. Vescovi, I. Stefanon, and D. V. Vassallo. 2014. Chronic lead exposure increases blood pressure and myocardial contractility in rats. PloS ONE. 9(5): e96900. doi:10.1371/journal.pone.0096900.
  • Giannakopoulos, E., K. C. Christoforidis, A. Tsipis, M. Jerzykiewicz, and Y. Deligiannakis. 2005. Influence of Pb(II) on the radical properties of humic substances and model compounds. J. Phys. Chem. A. 109(10): 2223–2232.
  • González, M. G., X. Liu, R. Niessner, and C. Haisch. 2010. Lead ion detection in turbid media by pulsed photoacoustic spectrometry based on dissolution of gold nanoparticles. Sens. Actuators, B. 150(2): 770–773.
  • Guan, J., L. Jiang, L. Zhao, J. Li, and W. Yang. 2008. pH-dependent response of citrate capped Au nanoparticle to Pb2+ ion. Colloids Surf., A. 325(3): 194–197.
  • Hayat, M. A. 1989. Colloidal gold: Principles, methods, and applications. San Diego, CA: Academic Press.
  • Hermanson, G. 2008. Bioconjugate techniques. 2nd Edition. London, UK: Academic Press.
  • Hu, M., J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia. 2006. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11): 1084–1094.
  • Huang, H., C. Qu, X. Liu, S. Huang, Z. Xu, Y. Zhu, and P. K. Chu. 2011. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem. Commun. (Cambridge, U. K.). 47(24): 6897–6899.
  • Huang, K.-W., C.-J. Yu, and W.-L. Tseng. 2010. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid–capped gold nanoparticles: Improving size distribution and minimizing interparticle repulsion. Biosens. Bioelectron. 25(5): 984–989.
  • Hung, Y.-L., T.-M. Hsiung, Y.-Y. Chen, and C.-C. Huang. 2010. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta. 82(2): 516–522.
  • Hung, Y.-L., T.-M. Hsiung, Y.-Y. Chen, Y.-F. Huang, and C.-C. Huang. 2010. Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J. Phys. Chem. C. 114(39): 16329–16334.
  • Jezierski, A., F. Czechowski, M. Jerzykiewicz, Y. Chen, and J. Drozd. 2000. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochim. Acta, Part A. 56A(2): 379–385.
  • Jezierski, A., F. Czechowski, M. Jerzykiewicz, I. Golonka, J. Drozd, E. Bylinska, Y. Chen, and M. R. Seaward. 2002. Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants. Spectrochim. Acta, Part A. 58(6): 1293–1300.
  • Kim, J. H., S. H. Han, and B. H. Chung. 2011. Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosens. Bioelectron. 26(5): 2125–2129.
  • Kim, Y., R. C. Johnson, and J. T. Hupp. 2001. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 1(4): 165–167.
  • Leng, Y., Y. Li, A. Gong, Z. Shen, L. Chen, and A. Wu. 2013. Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: Understanding the involved molecules from experiment to simulation. Langmuir. 29(25): 7591–7599.
  • Li, C. L., C. C. Huang, W. H. Chen, C. K. Chiang, and H. T. Chang. 2012. Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst. 137(22): 5222–5228.
  • Li, F., L. Yang, M. Chen, P. Li, and B. Tang. 2013. A selective amperometric sensing platform for lead based on target-induced strand release. Analyst. 138(2): 461–466.
  • Liu, J., and Y. Lu. 2003. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125(22): 6642–6643.
  • Manceau, A., M.-C. Boisset, G. Sarret, J.-L. Hazemann, M. Mench, P. Cambier, and R. Prost. 1996. Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Env. Sci. Technol. 30(5): 1540–1552.
  • Marbella, L., B. Serli-Mitasev, and P. Basu. 2009. Development of a fluorescent Pb2+ sensor. Angew. Chem., Int. Ed. 48(22): 3996–3998.
  • Miao, X.-M., L.-S. Ling, and X.-T. Shuai. 2012. Detection of Pb2+ at attomole levels by using dynamic light scattering and unmodified gold nanoparticles. Anal. Biochem. 421(2): 582–586.
  • Oyelere, A. K., P. C. Chen, X. Huang, I. H. El-Sayed, and M. A. El-Sayed. 2007. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 18(5): 1490–1497.
  • Putheti, R., R. Okigbo, S. Patil, M. Advanapu, and R. Leburu. 2010. Method development and validations: Characterization of critical elements in the development of pharmaceuticals. Int. J. Health Res. 1(1): 5–14.
  • Řezanka, P., H. Řezanková, P. Matějka, and V. Král. 2010. The chemometric analysis of UV–visible spectra as a new approach to the study of the NaCl influence on aggregation of cysteine-capped gold nanoparticles. Colloids Surf., A. 364(1–3): 94–98.
  • Russian State Standard. 1974. (GOST) 18293-72. Drinking water. Methods for the determination of lead, zinc, silver. Decision on State Standards of the USSR, the official publication, Moscow, USSR. (In Russian).
  • Russian State Standard. 1988. GOST 13273-88. Drinking curative mineral and therapeutic mineral waters. Specifications. Interstate standard, publishing standards, Moscow, Russian Federation. (In Russian).
  • Russian State Standard. 1998. GOST R 51232-98. Drinking water. General requirements for the organization and quality control methods. Water quality control: Coll. GOST. “STANDARTINFORM”, Moscow, Russian Federation. (In Russian).
  • Russian State Standard. 2000. GOST 51309-99. Drinking water. Determination of elements content by atomic spectrometry methods. Water quality control: Coll. GOST. “STANDARTINFORM”, Moscow, Russian Federation. (In Russian).
  • Russian State Standard. 2003. GOST 52180-2003. Drinking water. Determination of elements content by stripping voltammetric method. Water quality control: Coll. GOST. “STANDARTINFORM”, Moscow, Russian Federation. (In Russian).
  • SanPiN. 1996. Sanitary Regulation SanPiN 2.1.4.559-96. Drinking water. Hygienic requirements for water quality of centralized drinking water supply. Quality control., Resolution of the Chief State Sanitary Inspector of the Russian Federation No. 24 dated September 26, 2001 (version dated February 25, 2010 with amendments dated June 28, 2010) “On Enactment of Sanitary Rules (together with Sanitary Rules and Regulations (“SanPin”). Moscow, Russian Federation.
  • Senut, M. C., P. Cingolani, A. Sen, A. Kruger, A. Shaik, H. Hirsch, S. T. Suhr, and D. Ruden. 2012. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics-UK. 4(6): 665–674.
  • Standard C33 A.S.T.M. 2003. (2006). Specification for Concrete Aggregates. West Conshohocken, PA: ASTM International. doi:10.1520/C0033-03R06. www.astm.org.
  • United States Environmental Protection Agency (EPA). 2007. Economic and Supporting Analyses: Short-Term Regulatory Changes to the Lead and Copper Rule. Office of Water (4607 M) EPA-815-R0–7022 September 2007. www.epa.gov/safewater
  • United States Environmental Protection Agency (EPA). 2013. Drinking Water Contaminants. http://water.epa.gov/drink/contaminants/index.cfm#Inorganic (accessed on 3 June 2013).
  • World Health Organization. 1996. WHO/SDE/WSH/03.04/08. Iron in Drinking-water. Background document for development of World Health Organization Guidelines for Drinking-water Quality. 2nd ed. Vol. 2. Health criteria and other supporting information. Geneva: World Health Organization.
  • World Health Organization. 2009. Global health risks: Mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization. http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf
  • Wu, Y. S., F. F. Huang, and Y. W. Lin. 2013. Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. ACS Appl. Mater. Interfaces. 5(4): 1503–1509.
  • Xia, K., W. Bleam, and P. A. Helmke. 1997. Studies of the nature Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy. Geochim. Cosmochim. Acta. 61(11): 2211–2221.
  • Yoosaf, K., B. I. Ipe, C. H. Suresh, and K. G. Thomas. 2007. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C. 111(34): 12839–12847.
  • Zhou, Y., H. Dong, L. Liu, M. Li, K. Xiao, and M. Xu. 2014. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sens. Actuators, B. 196: 106–111.
  • Zhu, D., X. Li, X. Liu, J. Wang, and Z. Wang. 2012. Designing bifunctionalized gold nanoparticle for colorimetric detection of Pb2+ under physiological condition. Biosens. Bioelectron. 31(1): 505–509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.