136
Views
4
CrossRef citations to date
0
Altmetric
Biosensors

A Glucose Biosensor Based on Immobilization of Glucose Oxidase on Platinum Nanoparticle Doped Santa Barbara Amorphous Material-15

, , , , &
Pages 1139-1149 | Received 27 Feb 2014, Accepted 28 Sep 2014, Published online: 31 Dec 2014

REFERENCES

  • Ahmad, M., C. F. Pan, Z. X. Luo, and J. Zhu. 2010. A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J. Phys. Chem. C 114: 9308–9313.
  • Bai, Y., Y. Y. Sun, and C. Q. Sun. 2008. Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens. Bioelectron. 24: 579–585.
  • Chu, X. F., X. H. Zhu, Y. P. Dong, T. Y. Chen, M. F. Ye, and W. Q. Sun. 2012. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods J. Electro. Chem. 676: 20–26.
  • Deng, S. Y., G. Q. Jian, J. P. Lei, Z. Hu, and H. X. Ju. 2009. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens. Bioelectron. 25: 373–377.
  • Hsu, C. W., and G. J. Wang. 2014. Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio. Biosens. Bioelectron. 56: 204–209.
  • Karuppiah, C., S. Palanisamy, S. M. Chen, V. Veeramani, and P. Priakaruppana. 2014. A novel enzymatic glucose biosensor and sensitive non-enzymatichydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors Actuators B. 196: 450–456.
  • Lai, G. S., F. Yan, and H. X. Ju. 2009. Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal. Chem. 81: 9730–9736.
  • Li, H., J. He, Y. F. Zhao, D. Wu, Y. Y. Cai, Q. Wei, and M. H. Yang. 2009. Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor. Electrochim. Acta. 56: 2960–2965.
  • Lin, J. H., C. Y. He, Y. Zhao, and S. S. Zhang. 2009. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators, B 137: 768–773.
  • Meng, L., J. Jin, G. X. Yang, T. H. Lu, H. Zhang, and C. X. Cai. 2009. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem. 81: 7271–7280.
  • Muguruma, H., A. Hiratsuka, and I. Karube. 2000. Thin-film glucose biosensor based on plasma-polymerized film: Simple design for mass production. Anal. Chem. 72: 2671–2675.
  • Newman, J. D., and A. P. F. Turner. 2005. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 20: 2435–2453.
  • Qu, F. L., A. W. Shi, M. H. Yang, J. H. Jiang, G. L. Shen, and R. Q. Yu. 2007. Preparation and characterization of Prussian blue nanowire array and bioapplication for glucose biosensing. Anal. Chim. Acta. 605: 28–33.
  • Rioux, R. M., H. Song, J. D. Hoefelmeyer, P. Yang, and G. A. Somorjai. 2005. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B 109: 2192–2202.
  • Rosenzweig, Z., and R. Kopelman. 1996. Analytical properties of miniaturized oxygen and glucose fiber optic sensors. Sens. Actuators, B 35: 475–483.
  • Salimi, A., E. Sharifi, A. Noorbakhsh, and S. Soltanian. 2007. Immobilization of glucose oxidase on electrodeposited nickel oxidenanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 22: 3146–3153.
  • Teranish, T., M. Hosoe, T. Tanaka, and M. Miyake. 1999. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B. 103: 3818–3827.
  • Tierney, S., B. M. Hasle Falch, D. R. Hjelme, and B. T. Stokke. 2009. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: Toward continuous monitoring of blood glucose in vivo. Anal. Chem. 81: 3630–3636.
  • Tsai, T. W., G. Heckert, L. F. Neves, Y. Q. Tan, D. Y. Kao, R. G. Harrison, D. E. Resasco, and D. W. Schmidtke. 2009. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal. Chem. 81: 7917–7925.
  • Wang, J. 2008. Electrochemical glucose biosensors. Chem. Rev. 108: 814–825.
  • Wang, Y., J. Ren, K. Deng, L. Gui, and Y. Tang. 2000. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 12: 1622–1627.
  • Ward Muscatello, M. M., L. E. Stunja, and S. A. Asher. 2009. Polymerized crystalline colloidal array sensing of high glucose concentrations. Anal. Chem. 81: 4978–4986.
  • Yan, Q. Y., B. Peng, G. Su, B. E. Cohan, T. C. Major, and M. E. Meyerhoff. 2011. Measurement of tear glucose levels with amperometric glucose biosensor /capillary tube configuration. Anal. Chem. 83: 8341–8346.
  • Yang, M. H., Y. H. Yang, Y. L. Liu, G. L. Shen, and R. Q. Yu. 2006. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 21: 1125–1131.
  • Yang, C. Y., Z. J. Zhang, Z. L. Shi, P. Xue, P. P. Chang, and R. F. Yan. 2010. Application of a novel co-enzyme reactor in chemiluminescence flow-through biosensor for determination of lactose. Talanta. 82: 319–324.
  • Zhao, D., Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky. 1998. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120: 6024–6036.
  • Zhao, P., L. H. Wang, C. S. Sun, T. Y. Jiang, J. H. Zhang, Q. Zhang, J. Sun, Y. H. Deng, and S. L. Wang. 2012. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. European J. Pharm. Biopharm. 80: 535–543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.