798
Views
28
CrossRef citations to date
0
Altmetric
Bioanalytical

Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine

, &
Pages 1044-1069 | Received 18 Aug 2014, Accepted 09 Oct 2014, Published online: 31 Dec 2014

REFERENCES

  • Actis, P., M. M. Maalouf, H. J. Kim, A. Lohith, B. Vilozny, R. A. Seger, and N. Pourmand. 2013. Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8(1): 546–553.
  • Adams, R. N., E. Murrill, R. McCreery, L. Blank, and M. Karolczak. 1972. “6-Hydroxydopamine, a new oxidation mechanism. Eur. J. Pharmacol. 17(2): 8.792.
  • Akyilmaz, E., M. Turemis, and I. Yasa. 2011. Voltammetric determination of epinephrine by White rot fungi (Phanerochaete chrysosporium ME446) cells based microbial biosensor. Biosens. Bioelectron. 26(5): 2590–2594.
  • Amine, A., and J. M. Kauffmann. 1992. Preparation and characterization of a fragile enzyme immobilized carbon paste electrode. Bioelectrochem. Bioenerg. 28(1–2): 117–125.
  • Apetrei, I. M., and C. Apetrei. 2013. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine. Int. J. Nanomedicine 8: 4391–4398.
  • Baron, R., M. Zayats, and I. Willner. 2005. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal. Chem. 77(6): 1566–1571.
  • Bath, B. D., H. B. Martin, R. M. Wightman, and M. R. Anderson. 2001. Dopamine adsorption at surface modified carbon-fiber electrodes. Langmuir 17(22): 7032–7039.
  • Batra, B., and C. S. Pundir. 2013. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens. Bioelectron. 47: 496–501.
  • Bedioui, F., and S. Griveau. 2013. Electrochemical detection of nitric oxide: Assessement of twenty years of strategies. Electroanalysis 25(3): 587–600.
  • Behrend, C. E., S. M. Cassim, M. J. Pallone, J. A. Daubenspeck, A. Hartov, D. W. Roberts, and J. C. Leiter. 2009. Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats. J. Neurosci. Meth. 180(2): 278–289.
  • Beitollahi, H., H. Karimi-Maleh, and H. Khabazzadeh. 2008. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N ’-phenyl-hydrazinecarbothioamide. Anal. Chem. 80(24): 9848–9851.
  • Berman, S. B., and T. G. Hastings. 1999. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73(3): 1127–1137.
  • Bhattachayay, D., P. Pal, S. Banerjee, S. K. Sanyal, A. P. F. Turner, and P. Sarkar. 2008. Electrochemical acetylcholine chloride biosensor using an acetylcholine esterase biomimic. Anal. Lett. 41(8): 1387–1397.
  • Blank, C. L., E. Murrill, and R. N. Adams. 1972. Central nervous system effects of 6-aminodopamine and 6-hydroxydopamine. Brain Res. 45(2): 635–637.
  • Brandon, E. P., T. Mellott, D. P. Pizzo, N. Coufal, K. A. D’Amour, K. Gobeske, M. Lortie, 2004. Choline transporter 1 maintains cholinergic function in choline acetyltransferase haploinsufficiency. J. Neurosci. 24(24): 5459–5466.
  • Burmeister, J. J., and G. A. Gerhardt. 2001. Self referencing ceramic based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal. Chem. 73(5): 1037–1042.
  • Burmeister, J. J., M. Palmer, and G. A. Gerhardt. 2005. L-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosensor. Bioelectron. 20(9): 1772–1779.
  • Burmeister, J. J., F. Pomerleau, P. Huettl, C. R. Gash, C. E. Wemer, J. P. Bruno, and G. A. Gerhardt. 2008. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosensor. Bioelectron. 23(9): 1382–1389.
  • Burmeister, J. J., F. Pomerleau, M. J. Palmer, B. K. Day, P. Huettl, and G. A. Gerhardt. 2002. Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J. Neurosci. Meth. 119: 163–171.
  • Castro, S. S. L., R. J. Mortimer, M. F. de Oliveira, and N. R. Stradiotto. 2008. Electrooxidation and determination of dopamine using a Nafion (R)-cobalt hexacyanoferrate film modified electrode. Sensors 8(3): 1950–1959.
  • Celebanska, A., D. Tomaszewska, A. Lesniewski, and M. Opallo. 2011. Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing. Biosens. Bioelectron. 26(11): 4417–4422.
  • Chang, J. L., G. T. Wei, and J. M. Zen. 2011. Screen-printed ionic liquid/preanodized carbon electrode: Effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem. Comm. 13(2): 174–177.
  • Cheer, J. F., K. M. Wassum, L. A. Sombers, M. L. A. V. Heien, J. L. Ariansen, B. J. Aragona, P. E. M. Phillips, and R. M. Wightman. 2007. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J. Neurosci. 27(4): 791–795.
  • Chen, W., S. Cai, Q.-Q. Ren, W. Wen, and Y.-D. Zhao. 2012. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 137(1): 49–58.
  • Chen, X., X. Tian, I. Shin, and J. Yoon. 2011. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 40(9): 4783–4804.
  • Chen, Y., H. Song, J. Mao, M. Liu, C. Ding, and Z. Pan. 2013. Design and synthesis of two macrocyclic dinuclear copper(II) complexes with reversible binding of nitric oxide. Inorgan. Chem. Comm. 27: 131–137.
  • Clausmeyer, J., P. Actis, A. López Córdoba, Y. Korchev, and W. Schuhmann. 2014. Nanosensors for the detection of hydrogen peroxide. Electrochem. Comm. 40: 28–30.
  • Claussen, J. C., M. S. Artiles, E. S. McLamore, S. Mohanty, J. Shi, J. L. Rickus, T. S. Fisher, and D. M. Porterfield. 2011. Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: A comparative study. J. Mater. Chem. 21(30): 11224–11231.
  • Coneski, P. N., and M. H. Schoenfisch. 2012. Nitric oxide release: Part III. Measurement and reporting. Chem. Soc. Rev. 41(10): 3753–3758.
  • Cosnier, S., C. Innocent, L. Allien, S. Poitry, and M. Tsacopoulos. 1997. An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. Anal. Chem. 69(5): 968–971.
  • Cui, Y., J. P. Barford, and R. Renneberg. 2007. Development of an interference-free biosensor for l-glutamate using a bienzyme salicylate hydroxylase/l-glutamate dehydrogenase system. Enzyme Microbial. Technol. 41(6–7): 689–693.
  • Danbolt, N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65(1): 1–105.
  • Dang, X., C. Hu, Y. Wang, and S. Hu. 2011. Gold nanoparticle film grown on quartz fiber and its application as a microsensor of nitric oxide. Sensor. Actuators, B 160(1): 260–265.
  • Dazzi, L., E. Seu, G. Cherchi, and G. Biggio. 2003. Antagonism of the stress-induced increase in cortical norepinephrine output by the selective norepinephrine reuptake inhibitor reboxetine. Eur. J. Pharmacol. 476(1–2): 55–61.
  • Doaga, R., T. McCormac, and E. Dempsey. 2009. Electrochemical sensing of NADH and glutamate based on meldola blue in 1,2-diaminobenzene and 3,4-ethylenedioxythiophene polymer films. Electroanalysis 21(19): 2099–2108.
  • Dunphy, R., and D. J. Burinsky. 2003. Detection of choline and acetylcholine in a pharmaceutical preparation using high-performance liquid chromatography/electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 31(5): 905–915.
  • Duran, N., M. A. Rosa, A. D’Annibale, and L. Gianfreda. 2002. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31(7): 907–931.
  • Fang, H., T. L. Vickrey, and B. J. Venton. 2011. Analysis of biogenic amines in a single drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal. Chem. 83(6): 2258–2264.
  • Featherstone, D. E. 2009. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem. Neurosci. 1(1): 4–12.
  • Finnerty, N. J., S. L. O’Riordan, F. O. Brown, P. A. Serra, R. D. O’Neill, and J. P. Lowry. 2012. In vivo characterization of a Nafion[registered sign]-modified Pt electrode for real-time nitric oxide monitoring in brain extracellular fluid. Anal. Methods 4(2): 550–557.
  • Finnerty, N. J., S. L. O’Riordan, E. Palsson, and J. P. Lowry. 2012. Brain nitric oxide: Regional characterization of a real-time microelectrochemical sensor. J. Neurosci. Method. 209(1): 13–21.
  • Ganesana, M., J. S. Erlichman, and S. Andreescu. 2012. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radical Biol. Med. 53(12): 2240–2249.
  • Garcia, M. G., G. M. E. Armendariz, L. A. Godinez, J. Torres, S. Sepulveda-Guzman, and E. Bustos. 2011. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites. Electrochim. Acta 56(22): 7712–7717.
  • Gholizadeh, A., S. Shahrokhian, A. Irajizad, S. Mohajerzadeh, M. Vosoughi, S. Darbari, and Z. Sanaee. 2012. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate. Biosens. Bioelectron. 31(1): 110–115.
  • Goriushkina, T. B., A. P. Soldatkin, and S. V. Dzyadevych. 2009. Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J. Agricult. Food Chem. 57(15): 6528–6535.
  • Govindarajan, S., C. J. McNeil, J. P. Lowry, C. P. McMahon, and R. D. O’Neill. 2013. Highly selective and stable microdisc biosensors for l-glutamate monitoring. Sens. Actuators, B 178: 606–614.
  • Goyal, R. N., and S. Bishnoi. 2011. Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. Talanta 84(1): 78–83.
  • Guerrieri, A., V. Lattanzio, F. Palmisano, and P. G. Zambonin. 2006. Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor. Biosens. Bioelectron. 21(9): 1710–1718.
  • Gunaratna, P. C., and G. S. Wilson. 1990. Optimization of multienzyme flow reactors for determination of acetylcholine. Anal. Chem. 62(4): 402–407.
  • Hamdi, N., J. Wang, E. Walker, N. T. Maidment, and H. G. Monbouquette. 2006. An electroenzymatic l-glutamate microbiosensor selective against dopamine. J. Electroanal. Chem. 591(1): 33–40.
  • Hascup, K. N., E. R. Hascup, F. Pomerleau, P. Huettl, and G. A. Gerhardt. 2008. Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J. Pharmacol. Experiment. Therapeut. 324(2): 725–731.
  • Hawkins, C. L., and M. J. Davies. 2014. Detection and characterization of radicals in biological materials using EPR methodology. Biochim. Biophys. Acta (BBA). 1840(2): 708–721.
  • Heng, J. I.-T., G. Moonen, and L. Nguyen. 2007. Neurotransmitters regulate cell migration in the telencephalon. Eur. J. Neurosci. 26(3): 537–546.
  • Henstridge, M. C., E. J. F. Dickinson, M. Aslanoglu, C. Batchelor-McAuley, and R. G. Compton. 2010. Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sens. Actuators, B 145(1): 417–427.
  • Ho S., Jun, H. Do, and Y. Lee. 2010. simple fabrication of amperometric nitric oxide microsensors based on electropolymerized membrane films. Electroanalysis 22(3): 359–366.
  • Hou, S. F., M. L. Kasner, S. J. Su, K. Patel, and R. Cuellari. 2010. Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J. Phys. Chem. C 114(35): 14915–14921.
  • Huynh, T. P., K. C. C. Bikram, W. Lisowski, F. D’Souza, and W. Kutner. 2013. Molecularly imprinted polymer of bis(2,2′-bithienyl)methanes for selective determination of adrenaline. Bioelectrochemistry 93: 37–45.
  • Ispas, C. R. 2010. Biosensors based on inorganic nanoparticles with biometric properties: Biomedical applications and in vivo cytotoxicity measurments. Master’s Thesis, Clarkson University.
  • Ispas, C. R., G. Crivat, and S. Andreescu. 2012. Review: Recent developments in enzyme-based biosensors for biomedical analysis. Anal. Lett. 45(2–3): 168–186.
  • Jackowska, K., and P. Krysinski. 2013. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405(11): 3753–3771.
  • Jang, D. P., I. Kim, S. Y. Chang, H. K. Min, K. Arora, M. P. Marsh, S. C. Hwang, C. J. Kimble, K. E. Bennet, and K. H. Lee. 2012. Paired pulse voltammetry for differentiating complex analytes. Analyst 137(6): 1428–1435.
  • Jeffries, C., N. Pasco, K. Baronian, and L. Gorton. 1997. Evaluation of a thermophile enzyme for a carbon paste amperometric biosensor: L-glutamate dehydrogenase. Biosens. Bioelectron. 12(3): 225–232.
  • Jeong, H., and S. Jeon. 2008. Determination of dopamine in the presence of ascorbic acid by nafion and single-walled carbon nanotube film modified on carbon fiber microelectrode. Sensors 8(11): 6924–6935.
  • Jo, A., H. Do, G.-J. Jhon, M. Suh, and Y. Lee. 2011. Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain. Anal. Chem. 83(21): 8314–8319.
  • Kang, T.-F., G.-L. Shen, and R.-Q. Yu. 1997. Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Anal. Chim. Acta 354(1–3): 343–349.
  • Keithley, R. B., P. Takmakov, E. S. Bucher, A. M. Belle, C. A. Owesson-White, J. Park, and R. M. Wightman. 2011. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal. Chem. 83(9): 3563–3571.
  • Khan, A., and S. Ab Ghani. 2012. Multienzyme microbiosensor based on electropolymerized o-phenylenediamine for simultaneous in vitro determination of acetylcholine and choline. Biosens. Bioelectron. 31(1): 433–438.
  • Khan, A., A. A. Khan, A. M. Asiri, M. A. Rub, N. Azum, M. M. Rahman, S. B. Khan, and S. A. Ghani. 2013. A new trend on biosensor for neurotransmitter choline/acetylcholine—An overview. Appl. Biochem. Biotechnol. 169(6): 1927–1939.
  • Kharian, S., N. Teymoori, and M. A. Khalilzadeh. 2012. Multi-wall carbon nanotubes and TiO2 as a sensor for electrocatalytic determination of epinephrine in the presence of p-chloranil as a mediator. J. Solid State Electrochem. 16(2): 563–568.
  • Kharitonov, A. B., A. N. Shipway, and I. Willner. 1999. An Au nanoparticle/bisbipyridinium cyclophane-functionalized ion sensitive field-effect transistor for the sensing of adrenaline. Anal. Chem. 71(23): 5441–5443.
  • Kim, Y. R., S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, and H. Kim. 2010. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10): 2366–2369.
  • Kumar, P., A. Kalita, and B. Mondal. 2012. Copper(ii) complexes as turn on fluorescent sensors for nitric oxide. Dalton Transactions 41(35): 10543–10548.
  • Lapp, H., U. Spohn, and D. Janasek. 1996. An enzymatic chemiluminescence optrode for choline detection under flow injection conditions. Anal. Lett. 29(1): 1–17.
  • Larsson, N., T. Ruzgas, L. Gorton, M. Kokaia, P. Kissinger, and E. Csoregi. 1998. Design and development of an amperometric biosensor for acetylcholine determination in brain microdialysates. Electrochim. Acta 43(23): 3541–3554.
  • Lee, S. R., M. M. Rahman, M. Ishida, and K. Sawada. 2009. Development of a highly-sensitive acetylcholine sensor using a charge-transfer technique on a smart biochip. Trac-Trends Anal. Chem. 28(2): 196–203.
  • Li, Y. H., X. S. Liu, and W. Z. Wei. 2011. Square wave voltammetry for selective detection of dopamine using polyglycine modified carbon ionic liquid electrode. Electroanalysis 23(12): 2832–2838.
  • Li, Y. H., X. S. Liu, X. D. Zeng, X. Y. Liu, B. Kong, W. Z. Wei, and S. L. Luo. 2011. Selective and sensitive detection of dopamine in the presence of ascorbic acid by molecular sieve/ionic liquids composite electrode. Electrochim. Acta 56(6): 2730–2734.
  • Lobo, M. J., A. J. Miranda, and P. Tuñón. 1997. Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis 9(3): 191–202.
  • Lowry, J. P., M. R. Ryan, and R. D. O’Neill. 1998. Behaviorally induced changes in extracellular levels of brain glutamate monitored at 1 s resolution with an implanted biosensor. Anal. Comm. 35(3): 87–89.
  • Lu, L. P., S. Q. Wang, and X. Q. Lin. 2004. Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal. Chim. Acta 519(2): 161–166.
  • Lu, X. Q., Y. Y. Li, J. Du, X. B. Zhou, Z. H. Xue, X. H. Liu, and Z. H. Wang. 2011. A novel nanocomposites sensor for epinephrine detection in the presence of uric acids and ascorbic acids. Electrochim. Acta 56(21): 7261–7266.
  • Maciejewska, J., K. Pisarek, I. Bartosiewicz, P. Krysinski, K. Jackowska, and A. T. Biegunski. 2011. Selective detection of dopamine on poly(indole-5-carboxylic acid)/tyrosinase electrode. Electrochim. Acta 56(10): 3700–3706.
  • Majewska, U. E., K. Chmurski, K. Biesiada, A. R. Olszyna, and R. Bilewicz. 2006. Dopamine oxidation at per(6-deoxy-6-thio)-alpha-cyclodextrin monolayer modified gold electrodes. Electroanalysis 18(15): 1463–1470.
  • Mano, N., and A. Heller. 2005. Detection of glucose at 2 fM concentration. Anal. Chem. 77(2): 729–732.
  • Manocha, M., and W. I. Khan. 2012. Serotonin and GI disorders: An update on clinical and experimental studies. Clin Trans Gastroenterol 3(13): 6.
  • Maragakis, N. J., and J. D. Rothstein. 2004. Glutamate transporters: Animal models to neurologic disease. Neurobiol. Dis. 15(3): 461–473.
  • McAteer, K., and R. D. Oneill. 1996. Strategies for decreasing ascorbate interference at glucose oxidase-modified poly(o-phenylenediamine)-coated electrodes. Analyst. 121(6): 773–777.
  • McMahon, C. P., S. J. Killoran, S. M. Kirwan, and R. D. O’Neill. 2004. The selectivity of electrosynthesised polymer membranes depends on the electrode dimensions: Implications for biosensor applications. Chem. Comm: 2128–2130.
  • McMahon, C. P., G. Rocchitta, P. A. Serra, S. M. Kirwan, J. P. Lowry, and R. D. O’Neill. 2006. The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity. Analyst 131(1): 68–72.
  • Min, K., and Y. J. Yoo. 2009. Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. Talanta 80(2): 1007–1011.
  • Mizutani, F., Y. Sato, Y. Hirata, T. Sawaguchi, and S. Yabuki. 1998. Glucose oxidase/polyion complex-bilayer membrane for elimination of electroactive interferents in amperometric glucose sensor. Anal. Chim. Acta 364(1–3): 173–179.
  • Mizutani, F., Y. Sato, T. Sawaguchi, S. Yabuki, and S. Iijima. 1998. Rapid measurement of transaminase activities using an amperometric l-glutamate-sensing electrode based on a glutamate oxidase–polyion complex-bilayer membrane. Sens. Actuator. B 52(1–2): 23–29.
  • Mohammad-Zadeh, L. F., L. Moses, and S. M. Gwaltney-Brant. 2008. Serotonin: A review. J. Vet. Pharmacol. Ther. 31(3): 187–199.
  • Munoz, P., S. Huenchuguala, I. Paris, and J. Segura-Aguilar. 2012. Dopamine oxidation and autophagy. Parkinsons Dis. 2012: 920953.
  • Nagy, P. I., G. Alagona, and C. Ghio. 1999. Theoretical studies on the conformation of protonated dopamine in the gas phase and in aqueous solution. J. Am. Chem. Soc. 121(20): 4804–4815.
  • Naylor, E., D. V. Aillon, S. Gabbert, H. Harmon, D. A. Johnson, G. S. Wilson, and P. A. Petillo. 2011. Simultaneous real-time measurement of EEG/EMG and l-glutamate in mice: A biosensor study of neuronal activity during sleep. J. Electroanal. Chem. 656(1–2): 106–113.
  • Njagi, J., M. Ball, M. Best, K. N. Wallace, and S. Andreescu. 2010. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine. Anal. Chem. 82(5): 1822–1830.
  • Njagi, J., M. M. Chernov, J. C. Leiter, and S. Andreescu. 2010. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82(3): 989–996.
  • Njagi, J., J. S. Erlichman, J. W. Aston, J. C. Leiter, and S. Andreescu. 2010. A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sensors Actuators B 143(2): 673–680.
  • Njagi, J., C. Ispas, and S. Andreescu. 2008. Mixed ceria-based metal oxides biosensor for operation in oxygen restrictive environments. Anal. Chem. 80(19): 7266–7274.
  • Oldenziel, W. H., G. Dijkstra, T. I. F. H. Cremers, and B. H. C. Westerink. 2006. In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Research 1118(1): 34–42.
  • Oni, J., N. Diab, S. Reiter, and W. Schuhmann. 2005. Metallophthalocyanine-modified glassy carbon electrodes: effects of film formation conditions on electrocatalytic activity towards the oxidation of nitric oxide. Sensor. Actuators, B 105(2): 208–213.
  • Opländer, C., C. M. Volkmar, A. Paunel-Görgülü, T. Fritsch, E. E. van Faassen, M. Mürtz, G. Grieb, et al. 2012. Dermal application of nitric oxide releasing acidified nitrite-containing liniments significantly reduces blood pressure in humans. Nitric Oxide 26(2): 132–140.
  • Ozel, Rfat Emrah, Kenneth N. Wallace, and Silvana Andreescu. 2014. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish. Environmental Science: Nano 1(1): 27–36.
  • Özel, R. E., R. S. J. Alkasir, K. Ray, K. N. Wallace, and S. Andreescu. 2013. Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles. Small. 9(24): 4250–4261.
  • Özel, R. E., C. Ispas, M. Ganesana, J. C. Leiter, and S. Andreescu. 2014. Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosensor. Bioelectron. 52: 397–402.
  • Özel, R. E., K. N. Wallace, and S. Andreescu. 2011. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos. Anal. Chim. Acta 695(1–2): 89–95.
  • Pan, S., and M. A. Arnold. 1996. Selectivity enhancement for glutamate with a Nafion/glutamate oxidase biosensor. Talanta 43(7): 1157–1162.
  • Park, S. S., M. Hong, C.-K. Song, G.-J. Jhon, Y. Lee, and M. Suh. 2010. Real-time in vivo simultaneous measurements of nitric oxide and oxygen using an amperometric dual microsensor. Anal. Chem. 82(18): 7618–7624.
  • Pasco, N., C. Jeffries, Q. Davies, A. J. Downard, A. D. Roddick-Lanzilotta, and L. Gorton. 1999. Characterisation of a thermophilic L-glutamate dehydrogenase biosensor for amperometric determination of L-glutamate by flow injection analysis. Biosens. Bioelectron. 14(2): 171–178.
  • Peng, Y., Y. Ji, D. Zheng, and S. Hu. 2009. In situ monitoring of nitric oxide release from rat kidney at poly(eosin b)-ionic liquid composite-based electrochemical sensors. Sens. Actuators, B 137(2): 656–661.
  • Perry, M., Q. Li, and R. T. Kennedy. 2009. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 653(1): 1–22.
  • Pomerleau, F., B. K. Day, P. Huettl, J. J. Burmeister, and G. A. Gerhardt. 2003. Real time in vivo measures of l-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann. NY Acad. Sci. 1003(1): 454–457.
  • Porras-Gutierrez, A., S. Griveau, C. Richard, A. Pailleret, S. Gutierrez-Granados, and F. Bedioui. 2009. Hybrid materials from carbon nanotubes, nickel tetrasulfonated phthalocyanine and thin polymer layers for the selective electrochemical activation of nitric oxide in solution. Electroanalysis 21(21): 2303–2310.
  • Prakash, S., S. Rajesh, S. R. Singh, C. Karunakaran, and V. Vasu. 2012. Electrochemical incorporation of hemin in a ZnO-PPy nanocomposite on a Pt electrode as NOx sensor. Analyst 137(24): 5874–5880.
  • Privett, B. J., J. H. Shin, and M. H. Schoenfisch. 2010. Electrochemical nitric oxide sensors for physiological measurements. Chem. Soc. Rev. 39(6): 1925–1935.
  • Quintero, J. E., F. Pomerleau, P. Huettl, K. W. Johnson, J. Offord, and G. A. Gerhardt. 2011. Methodology for rapid measures of glutamate release in rat brain slices using ceramic-based microelectrode arrays: Basic characterization and drug pharmacology. Brain Res. 1401: 1–9.
  • Reddy, S., B. E. K. Swamy, and H. Jayadevappa. 2012. CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 61: 78–86.
  • Roach, G., R. H. Wallace, A. Cameron, R. E. Ozel, C. F. Hongay, R. Baral, S. Andreescu, and K. N. Wallace. 2013. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Developm. Biol. 376(2): 171–186.
  • Robinson, D. L., A. Hermans, A. T. Seipel, and R. M. Wightman. 2008a. Monitoring rapid chemical communication in the brain. Chem. Rev. 108(7): 2554–2584.
  • Robinson, D. L., A. Hermans, A. T. Seipel, and R. M. Wightman. 2008b. Monitoring rapid chemical communication in the brain. Chem. Rev. 108: 2554–2584.
  • Robinson, D. L., B. J. Venton, M. L. A. V. Heien, and R. M. Wightman. 2003. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49(10): 1763–1773.
  • Ronit, F., E. Johann, G. Ron, Z. Maya, and W. Itamar. 2007. Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. Chem. - Eur. J. 13(26): 7288–7293.
  • Ryan, M. R., J. P. Lowry, and R. D. O’Neill. 1997. Biosensor for neurotransmitter L-glutamic acid designed for efficient use of L-glutamate oxidase and effective rejection of interference. Analyst 122(11): 1419–1424.
  • Salaita, G. N., L. Laguren-Davidson, F. Lu, N. Walton, E. Wellner, D. A. Stern, N. Batina, 1988. Electrochemical reactivity of 2,2′,5,5′-tetrahydroxybiphenyl and related compounds adsorbed at pt (111) surfaces: studies by eels, leed, auger spectroscopy and cyclic voltammetry. J. Electroanal. Chem. Interfac. Electrochem. 245(1–2): 253–273.
  • Santos, R. M., M. S. Rodrigues, J. Laranjinha, and R. M. Barbosa. 2013. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens. Bioelectron. 44: 152–159.
  • Santos, V. N., G. L. F. Mendonça, V. N. Freire, A. K. M. Holanda, J. R. Sousa, L. G. F. Lopes, J. Ellena, A. N. Correia, and P. de Lima-Neto. 2013. Electrochemical and Monte Carlo studies of self-assembled trans-[Fe(cyclam)(NCS)2]+complex ion on gold surface as electrochemical sensor for nitric oxide. Electrochim. Acta 91: 1–10.
  • Sazonova, N., J. I. Njagi, Z. S. Marchese, M. S. Ball, S. Andreescu, and S. Schuckers. 2009. Detection and prediction of concentrations of neurotransmitters using voltammetry and pattern recognition. 2009 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1–20: 3493–3496.
  • Schrlau, M. G., N. J. Dun, and H. H. Bau. 2009. Cell electrophysiology with carbon nanopipettes. ACS Nano 3(3): 563–568.
  • Shahrokhian, S., and R. S. Saberi. 2011. Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination. Electrochim. Acta 57: 132–138.
  • Saba Sheikh, S., E. Haque, and S. S. Mir. 2013. Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions. J. Neurodegen. Diseases 2013: 8.
  • Shimomura, T., T. Itoh, T. Sumiya, F. Mizukami, and M. Ono. 2009. Amperometric biosensor based on enzymes immobilized in hybrid mesoporous membranes for the determination of acetylcholine. Enzyme Microbial. Technol. 45(6–7): 443–448.
  • Shon, Y. M., K. H. Lee, S. J. Goerss, I. Y. Kim, C. Kimble, J. J. Van Gompel, K. Bennet, C. D. Blaha, and S. Y. Chang. 2010. High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci. Lett. 475(3): 136–140.
  • Si, P., H. L. Chen, P. Kannan, and D. H. Kim. 2011. Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes. Analyst 136(24): 5134–5138.
  • Singh, Y. S., L. E. Sawarynski, H. M. Michael, R. E. Ferrell, M. A. Murphey-Corb, G. M. Swain, B. A. Patel, and A. M. Andrews. 2009. Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult Rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem. Neurosci. 1(1): 49–64.
  • Stefan-van Staden, R. I., I. Moldoveanu, and J. F. van Staden. 2014. Pattern recognition of neurotransmitters using multimode sensing. J. Neurosci. Meth. 229: 1–7.
  • Stoyanova, A., and V. Tsakova. 2010. Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: II Role of the characteristics of the metal deposit. J. Solid State Electrochem. 14(11): 1957–1965.
  • Suzuki, A., T. A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, and Y. Einaga. 2007. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79(22): 8608–8615.
  • Suzuki, I., M. Fukuda, K. Shirakawa, H. Jiko, and M. Gotoh. 2013. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49: 270–275.
  • Swamy, B. E. K., and B. J. Venton. 2007. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132: 876–884.
  • Tang, H., P. Lin, H. L. W. Chan, and F. Yan. 2011. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 26(11): 4559–4563.
  • Tembe, S., M. Karve, S. Inamdar, S. Haram, J. Melo, and S. F. D’Souza. 2006. Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Anal. Biochem. 349(1): 72–77.
  • Thiagarajan, S., and S. M. Chen. 2009. Applications of nanostructured Pt-Au hybrid film for the simultaneous determination of catecholamines in the presence of ascorbic acid. J. Solid State Electrochem. 13(3): 445–453.
  • Thomas, A., H. Geyer, H. J. Mester, W. Schanzer, E. Zimmermann, and M. Thevis. 2006. Quantitative determination of adrenaline and noradrenaline in urine using liquid chromatography-tandem mass spectrometry. Chromatographia 64(9–10): 587–591.
  • Trouillon, R., C. Cheung, B. A. Patel, and D. O’Hare. 2010. Electrochemical study of the intracellular transduction of vascular endothelial growth factor induced nitric oxide synthase activity using a multi-channel biocompatible microelectrode array. Biochim. Biophys. Acta 1800(9): 929–936.
  • Tsafack, V. C., C. A. Marquette, F. Pizzolato, and L. J. Blum. 2000. Chemiluminescent choline biosensor using histidine-modified peroxidase immobilised on metal-chelate substituted beads and choline oxidase immobilised on anion-exchanger beads co-entrapped in a photocrosslinkable polymer. Biosens. Bioelectron. 15(3–4): 125–133.
  • Ulubay, S., and Z. Dursun. 2010. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80(3): 1461–1466.
  • Vahjen, W., J. Bradley, U. Bilitewski, and R. D. Schmid. 1991. Mediated enzyme electrode for the determination of L-glutamate. Anal. Lett. 24(8): 1445–1452.
  • Vinu Mohan A. M., K. K. Aswini, and V. M. Biju. 2014. Electrochemical codeposition of gold particle–poly(2-(2-pyridyl) benzimidazole) hybrid film on glassy carbon electrode for the electrocatalytic oxidation of nitric oxide. Sensor. Actuators, B 196: 406–412.
  • Walker, E., J. Wang, N. Hamdi, H. G. Monbouquette, and N. T. Maidment. 2007. Selective detection of extracellular glutamate in brain tissue using microelectrode arrays coated with over-oxidized polypyrrole. Analyst 132(11): 1107–1111.
  • Wang, C. I., W. T. Chen, and H. T. Chang. 2012. Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine. Anal. Chem. 84(22): 9706–9712.
  • Wang, Y., X. Zhang, Y. Chen, H. Xu, Y. Tan, and S. Wang. 2010. Detection of dopamine based on tyrosinase-Fe3O4 nanoparticles-chitosan nanocomposite biosensor. Am. J. Biomed. Sci. 2: 209–216.
  • Wang, Z. H., J. F. Xia, L. Y. Zhu, X. Y. Chen, F. F. Zhang, S. Y. Yao, Y. H. Li, and Y. Z. Xia. 2011. A selective voltammetric method for detecting dopamine at quercetin modified electrode incorporating graphene. Electroanalysis 23(10): 2463–2471.
  • Wightman, R. M., L. J. May, and A. C. Michael. 1988. Detection of dopamine dynamics in the brain. Anal. Chem. 60(13): 769A–779A.
  • Wilson, G. S., and M. Ammam. 2007. In vivo biosensors. FEBS Journal 274(21): 5452–5461.
  • Wood, K. M., and P. Hashemi. 2013. Fast-scan cyclic voltammetry analysis of dynamic serotonin reponses to acute escitalopram. ACS Chem. Neurosci. 4(5): 715–720.
  • Wu, L., L. Y. Feng, J. S. Ren, and X. G. Qu. 2012. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens. Bioelectron. 34(1): 57–62.
  • Xue, W., and T. H. Cui. 2008a. A high-resolution amperometric acetylcholine sensor based on nano-assembled carbon nanotube and acetylcholinesterase thin films. J. Nano Res. 1: 1–9.
  • Xue, W., and T. H. Cui. 2008b. A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles Sens. Actuators, B 134(2): 981–987.
  • Yao, T., S. Suzuki, H. Nishino, and T. Nakahara. 1995. On-line amperometric assay of glucose, L-glutamate, and acetylcholine using microdialysis probes and immobilized enzyme reactors. Electroanalysis 7(12): 1114–1117.
  • Yap, C. M., G. Q. Xu, and S. G. Ang. 2012. Amperometric nitric oxide sensor based on nanoporous platinum phthalocyanine modified electrodes. Anal. Chem. 85(1): 107–113.
  • Yoshimi, K., Y. Naya, N. Mitani, T. Kato, M. Inoue, S. Natori, T. Takahashi, A. Weitemier, N. Nishikawa, T. McHugh, Y. Einaga, and S. Kitazawa. 2011. Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci. Res. 71(1): 49–62.
  • Young, S. N., and M. Leyton. 2002. The role of serotonin in human mood and social interaction: Insight from altered tryptophan levels. Pharmacol., Biochem. Behav. 71(4): 857–865.
  • Zachek, M. K., A. Hermans, R. M. Wightman, and G. S. McCarty. 2008. Electrochemical dopamine detection: Comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry. J. Electroanalytical Chem. 614(1–2): 113–120.
  • Zhang, M., C. Mullens, and W. Gorski. 2005. Chitosan-glutamate oxidase gels: Synthesis, characterization, and glutamate determination. Electroanalysis 17(23): 2114–2120.
  • Zheng, Y., Y. Wang, and X. R. Yang. 2011. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens. Actuators B, 156(1): 95–99.
  • Zhu, M. F., C. Q. Zeng, and J. S. Ye. 2011. Graphene-modified carbon fiber microelectrode for the detection of dopamine in mice hippocampus tissue. Electroanalysis 23(4): 907–914.
  • Zhu, Z. H., L. N. Qu, Y. Q. Guo, Y. Zeng, W. Sun, and X. T. Huang. 2010. Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sens. Actuators, B 151(1): 146–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.