240
Views
8
CrossRef citations to date
0
Altmetric
Biosensors

Detection of DNA Hybridization Using Protein A Modified Ion Sensitive Field Effect Transistor

, &
Pages 1128-1138 | Received 19 Jun 2014, Accepted 05 Oct 2014, Published online: 31 Dec 2014

REFERENCES

  • Artigas, J., A. Beltran, C. Jiménez, A. Baldi, R. Mas, C. Domínguez, and J. Alonso. 2001. Application of ion sensitive field effect transistor based sensors to soil analysis. Comput. Electron. Agr. 31: 281–293.
  • Bergveld, P. 1970. Development of an ion-sensitive solid-state device for neurophysiological measurement. IEEE Trans. Biomed. Eng. 17: 70–71.
  • Caras, S., and J. Janata. 1980. Field effect transistor sensitive to penicillin. Anal. Chem. 52: 1935–1937.
  • Castellarnau, M., N. Zine, J. Bausells, C. Madrid, A. Juárez, J. Samitier, and A. Errachid. 2007. Integrated cell positioning and cell-based ISFET biosensors. Sensor. Actuat. B-Chem. 120: 615–620.
  • Chang, J., S. Mao, Y. Zhang, S. Cui, G. Zhou, X. Wu, C.-H. Yang, and J. Chen. 2013. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5: 3620–3626.
  • Chen, W.-Y., H.-C. Chen, Y.-S. Yang, C.-J. Huang, H. W.-H. Chan, and W.-P. Hu. 2013. Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosens. Bioelectron. 41: 795–801.
  • Dastagir, T., E. S. Forzani, R. Zhang, I. Amlani, L. A. Nagahara, R. Tsui, and N. Tao. 2007. Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. Analyst 132: 738–740.
  • Gonçalves, D., D. M. F. Prazeres, V. Chu, and J. P. Conde. 2008. Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. Biosens. Bioelectron. 24: 545–551.
  • Hashim, U., S. W. Chong, and W.-W. Liu. 2013. Fabrication of silicon nitride ion sensitive field-effect transistor for pH measurement and DNA immobilization/hybridization. J. Nano Mat. 2013: 1–9.
  • Ittarat, W., S. Chomean, C. Sanchomphu, N. Wangmaung, C. Promptmas, and W. Ngrenngarmlert. 2013. Biosensor as a molecular malaria differential diagnosis. Clinica. Chimica. Acta. 419: 47–51.
  • Kamahori, M., Y. Ishige, and M. Shimoda. 2007. DNA detection by an extended-gate FET sensor with a high-frequency voltage superimposed onto a reference electrode. Anal. Sci. 23: 75–79.
  • Kamahori, M., Y. Ishige, and M. Shimoda. 2008. Detection of DNA hybridization and extension reactions by an extended-gate field-effect transistor: Characterizations of immobilized DNA–probes and role of applying a superimposed high-frequency voltage onto a reference electrode. Biosens. Bioelectron. 23: 1046–1054.
  • Kim, H. J., J. W. Hummel, and S. J. Birrell. 2006. Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. Am. Soc. Agric. Biol. Eng. 49: 597–606.
  • Lee, C.-S., S. K. Kim, and M. Kim. 2009. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors 9: 7111–7131.
  • Lin, C.-H., C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, H.-C. Lin, F.-H. Ko, T.-Y. Huang, and Y.-S. Yang. 2008. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem. Commun. 30: 5749–5751.
  • Lin, C.-H., C.-H. Hung, C.-Y. Hsiao, H.-C. Lin, F.-H. Ko, and Y.-S. Yang. 2009. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosens. Bioelectron. 24: 3019–3024.
  • Park, K.-Y., S.-B. Choi, M. Lee, B.-K Sohn, and S.-Y. Choi. 2002. ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sensor. Actuat. B-Chem. 83: 90–97.
  • Selvanayagam, Z. E., P. Neuzil, P. Gopalakrishnakone, U. Sridhar, M. Singh, and L. C. Ho. 2002. An ISFET-based immunosensor for the detection of β-Bungarotoxin. Biosens. Bioelectron. 17: 821–826.
  • Seo, H.-II, C.-S. Kim, B.-K. Sohn, T. Yeow, M.-T. Son, and M. Haskard. 1997. ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide. Sensor. Actuat. B-Chem. 40: 1–5.
  • Subramanian, S., K. H. Aschenbach, J. P. Evangelista, M. B. Najjar, W. Song, and R. D. Gomez. 2012. Rapid, sensitive and label-free detection of Shiga-toxin producing Escherichia coli O157 using carbon nanotube biosensors. Biosens. Bioelectron. 32: 69–75.
  • Uno, T., H. Tabata, and T. Kawai. 2007. Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. Anal. Chem. 79: 52–59.
  • Vijayalakshmi, A., Y. Tarunashree, B. Baruwati, S. V. Manorama, B. L. Narayana, R. E. C. Johnson, and N. M. Rao. 2008. Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles. Biosens. Bioelectron. 23: 1708–1714.
  • Villamizar, R. A., A. Maroto, F. X. Rius, I. Inza, and M. J. Figueras. 2008. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens. Bioelectron. 24: 279–283.
  • Wangmaung, N., C. Promptmas, S. Chomean, C. Sanchomphu, and W. Ittarat. 2013. Low cost biosensor-based molecular differential diagnosis of alpha-thalassemia (Southeast Asia deletion). Clin. Chem. Lab. Med. 51: 1199–1205.
  • Wenga, G., E. Jacques, A.-C. Salaün, R. Rogel, L. Pichon, and F. Geneste. 2013. Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens. Bioelectron. 40: 141–146.
  • Wu, C.-C., F.-H. Ko, Y.-S. Yang, D.-L. Hsia, B.-S. Lee, and T.-S. Su. 2009. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens. Bioelectron. 25: 820–825.
  • Xu, X., X. Weng, A. Liu, Q. Lin, C. Wang, W. Chen, and X. Lin. 2013. Electrochemical genosensor for detection of human mammaglobin in polymerase chain reaction amplification products of breast cancer patients. Anal. Bioanal. Chem. 405: 3097–3103.
  • Zayats, M., O. A. Raitman, V. I. Chegel, A. B. Kharitonov, and I. Willner. 2002. Probing antigen-antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors. Anal. Chem. 74: 4763–4773.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.