208
Views
4
CrossRef citations to date
0
Altmetric
Fluorescence

Ultrasensitive Fluorescence Determination of Adenosine Deaminase using DNA-Templated Silver Nanoclusters and Isothermal Amplification

, &
Pages 1881-1891 | Received 21 Oct 2014, Accepted 27 Dec 2014, Published online: 26 May 2015

REFERENCES

  • Akanda, M. R., V. Tamilavan, S. Park, K. Jo, M. H. Hyun, and H. Yang. 2013. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical–chemical–chemical redox cycling for the detection of E. coli O157:H7. Analytical Chemistry 85(3): 1631–36. doi:10.1021/ac3028855
  • Akter, F., M. Mie, S. Grimm, P.-Å. Nygren, and E. Kobatake. 2012. Detection of antigens using a protein–DNA chimera developed by enzymatic covalent bonding with phiX gene A*. Analytical Chemistry 84(11): 5040–46. doi:10.1021/ac300708r
  • Cheng, S., F. Shi, X. Jiang, L. Wang, W. Chen, and C. Zhu. 2012. Sensitive detection of small molecules by competitive immunomagnetic-proximity ligation assay. Analytical Chemistry 84(5): 2129–32. doi:10.1021/ac3001463
  • Ding, C., X. Li, Y. Ge, and S. Zhang. 2010. Fluorescence detection of telomerase activity in cancer cells based on isothermal circular strand-displacement polymerization reaction. Analytical Chemistry 82(7): 2850–55. doi:10.1021/ac902818w
  • Duan, R., X. Zuo, S. Wang, X. Quan, D. Chen, Z. Chen, L. Jiang, C. Fan, and F. Xia. 2014. Quadratic isothermal amplification for the detection of microRNA. Nature Protocols 9(3): 597–607. doi:10.1038/nprot.2014.036
  • Freeman, R., J. Girsh, A. F.-J. Jou, J.-A. A. Ho, T. Hug, J. Dernedde, and I. Willner. 2012. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Analytical Chemistry 84(14): 6192–98. doi:10.1021/ac3011473
  • Garai-Ibabe, G., R. Grinyte, A. Canaan, and V. Pavlov. 2012. Homogeneous assay for detection of active Epstein-Barr nuclear antigen 1 by thrombin activity modulation. Analytical Chemistry 84(14): 5834–37. doi:10.1021/ac301250f
  • Ho, H.-A., A. Najari, and M. Leclerc. 2008. Optical detection of DNA and proteins with cationic polythiophenes. Accounts of Chemical Research 41(2): 168–78. doi:10.1021/ar700115 t
  • Huang, Y., S. Zhao, Z.-F. Chen, M. Shi, J. Chen, and H. Liang. 2012. An amplified chemiluminescence aptasensor based on bi-resonance energy transfer on gold nanoparticles and exonuclease III-catalyzed target recycling. Chemical Communications 48(97): 11877–879. doi:10.1039/c2cc37130 h
  • Lee, J., K. Icoz, A. Roberts, A. D. Ellington, and C. A. Savran. 2009. Diffractometric detection of proteins using microbead-based rolling circle amplification. Analytical Chemistry 82(1): 197–202. doi:10.1021/ac901716d
  • Li, D., S. Song, and C. Fan. 2010. Target-responsive structural switching for nucleic acid-based sensors. Accounts of Chemical Research 43(5): 631–41. doi:10.1021/ar900245 u
  • Liu, H., L. Li, L. Duan, X. Wang, Y. Xie, L. Tong, Q. Wang, and B. Tang. 2013. High specific and ultrasensitive isothermal detection of MicroRNA by padlock probe-based exponential rolling circle amplification. Analytical Chemistry 85(16): 7941–47. doi:10.1021/ac401715k
  • Pei, H., L. Liang, G. Yao, J. Li, Q. Huang, and C. Fan. 2012. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angewandte Chemie International Edition 51(36): 9020–24. doi:10.1002/anie.201202356
  • Shah, P., A. Rørvig-Lund, S. Ben Chaabane, P. W. Thulstrup, H. G. Kjaergaard, E. Fron, J. Hofkens, S. W. Yang, and T. Vosch. 2012. Design aspects of bright red emissive silver nanoclusters/DNA probes for MicroRNA detection. ACS Nano 6(10): 8803–14. doi:10.1021/nn302633q
  • Shlyahovsky, B., D. Li, Y. Weizmann, R. Nowarski, M. Kotler, and I. Willner. 2007. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society 129(13): 3814–15. doi:10.1021/ja069291n
  • Timm, C., and C. M. Niemeyer. 2013. On-chip protein biosynthesis. Angewandte Chemie International Edition 52(10): 2652–54. doi:10.1002/anie.201208880
  • Xing, X.-J., X.-G. Liu, H. Yue, Q.-Y. Luo, H.-W. Tang, and D.-W. Pang. 2012. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosensors and Bioelectronics 37(1): 61–67. doi:10.1016/j.bios.2012.04.037
  • Xue, L., X. Zhou, and D. Xing. 2010. Highly sensitive protein detection based on aptamer probe and isothermal nicking enzyme assisted fluorescence signal amplification. Chemical Communications 46(39): 7373–75. doi:10.1039/c0cc02038a
  • Yin, J., X. He, K. Wang, Z. Qing, X. Wu, H. Shi, and X. Yang. 2012. One-step engineering of silver nanoclusters–aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 4(1): 110–12. doi:10.1039/c1nr11265a
  • Zhang, K., K. Wang, X. Zhu, Y. Gao, and M. Xie. 2014b. Rational design of signal-on biosensors by using photoinduced electron transfer between Ag nanoclusters and split G-quadruplex halves–hemin complexes. Chemical Communications 50(91): 14221–224. doi:10.1039/C4CC06664B
  • Zhang, K., K. Wang, X. Zhu, J. Zhang, L. Xu, B. Huang, and M. Xie. 2014c. Label-free and ultrasensitive fluorescence detection of cocaine based on a strategy that utilizes DNA-templated silver nanoclusters and the nicking endonuclease-assisted signal amplification method. Chemical Communications 50(2): 180–82. doi:10.1039/c3cc47418f
  • Zhang, K., K. Wang, M. Xie, X. Zhu, L. Xu, R. Yang, B. Huang, and X. Zhu. 2014a. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase. Biosensors and Bioelectronics 52(2): 124–28. doi:10.1016/j.bios.2013.08.049
  • Zhang, K., M. Xie, B. Zhou, Y. Hua, Z. Yan, H. Liu, L.-N. Guo, B. Wu, and B. Huang. 2013a. A new strategy based on aptasensor to time-resolved fluorescence assay for adenosine deaminase activity. Biosensors and Bioelectronics 41(3): 123–28. doi:10.1016/j.bios.2012.07.064
  • Zhang, K., Q. Yang, J. Zhang, L. Fu, Y. Zhou, B. Wu, M. Xie, and B. Huang. 2013b. An enzyme substrate binding aptamer complex based time-resolved fluorescence sensor for the adenosine deaminasedetection. Biosensors and Bioelectronics 42(4): 87–92. doi:10.1016/j.bios.2012.10.077
  • Zhang, K., X. Zhu, J. Wang, L. Xu, and G. Li. 2010. Strategy to fabricate an electrochemical aptasensor: application to the assay of adenosine deaminase activity. Analytical Chemistry 82(8): 3207–11. doi:10.1021/ac902771k
  • Zhang, L., J. Zhao, J. Jiang, and R. Yu. 2012a. Enzyme-regulated unmodified gold nanoparticle aggregation: a label free colorimetric assay for rapid and sensitive detection of adenosine deaminase activity and inhibition. Chemical Communications 48(89): 10996–998. doi:10.1039/c2cc36240f
  • Zhang, L., J. Zhu, Z. Zhou, S. Guo, J. Li, S. Dong, and E. Wang. 2013c. A new approach to light up DNA/Ag nanocluster-based beacons for bioanalysis. Chemical Science 4(10): 4004–10. doi:10.1039/c3sc51303c
  • Zhang, M., S.-M. Guo, Y.-R. Li, P. Zuo, and B.-C. Ye. 2012b. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chemical Communications 48(44): 5488–90. doi:10.1039/c2cc31626a
  • Zhang, Y., Y. Cai, Z. Qi, L. Lu, and Y. Qian. 2013d. DNA-templated silver nanoclusters for fluorescence turn-on assay of acetylcholinesterase activity. Analytical Chemistry 85(17): 8455–61. doi:10.1021/ac401966d
  • Zhang, Y., and C.-Y. Zhang. 2011. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Analytical Chemistry 84(1): 224–31. doi:10.1021/ac202405q
  • Zhao, W.-W., Z.-Y. Ma, P.-P. Yu, X.-Y. Dong, J.-J. Xu, and H.-Y. Chen. 2011. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Analytical Chemistry 84(2): 917–23. doi:10.1021/ac203184 g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.