466
Views
19
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Determination of Hydrazine at a Platinum Nanoparticle and Poly(Bromocresol Purple) Modified Carbon Nanotube Electrode

, &
Pages 990-1003 | Received 02 Dec 2014, Accepted 31 Mar 2015, Published online: 06 Apr 2016

References

  • Amlathe, S., and V. K. Gupta. 1988. Spectrophotometric determination of trace amounts of hydrazine in polluted water. The Analyst 113:1481–83. doi:10.1039/an9881301481
  • Budkuley, J. S. 1992. Determination of hydrazine and sulfite in the presence of one another. Mikrochimica Acta 108:103–05. doi:10.1007/BF01240376
  • Dursun, Z., and B. Gelmez. 2010. Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE. Electroanalysis 22:1106–14. doi:10.1002/elan.200900525
  • Ebadi, M. 2003. Electrocatalytic oxidation and flow amperometric detection of hydrazine on a dinuclear ruthenium phthalocyanine-modified electrode. Canadian Journal of Chemistry 81:161–68. doi:10.1139/v03-012
  • Garrod, S., M. E. Bollard, A. W. Nicholls, S. C. Connor, J. Connelly, J. K. Nicholson, and E. Holmes. 2005. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chemical Research in Toxicology 18:115–22. doi:10.1021/tx0498915
  • Gilbert, R., R. Rioux, and S. E. Saheb. 1984. Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Analytical Chemistry 56:106–09. doi:10.1021/ac00265a029
  • Golabi, S. M., and H. R. Zare. 1999. Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with electrodeposited film derived from caffeic acid. Electroanalysis 11:1293–300. doi:10.1002/(SICI)1521-4109(199911)11:17<1293::AID-ELAN1293>3.0.CO;2-2
  • Jayasri, D., and S. S. Narayanan. 2007. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. Journal of Hazardous Materials 144:348–54. doi:10.1016/j.jhazmat.2006.10.038
  • Koçak, S., and B. Aslışen. 2014. Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sensors and Actuators B: Chemical 196:610–18. doi:10.1016/j.snb.2014.02.061
  • Maleki, N., A. Safavi, E. Farjami, and F. Tajabadi. 2008. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Analytica Chimica Acta 611(2):151–55. doi:10.1016/j.aca.2008.01.075
  • Prodromidis, M. I. 2010. Impedimetric immunosensors – A review. Electrochimica Acta 55:4227–33. doi:10.1016/j.electacta.2009.01.081
  • Safavi, A., F. Abbasitabar, and M. R. H. Nezhad. 2007. Simultaneous kinetic spectrophotometric determination of isoniazid and hydrazine using H-point standard addition method. Chemia Analityczna (Warsaw) 52:835.
  • Safavi, A., and M. A. Karimi. 2002. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 58:785–92. doi:10.1016/S0039-9140(02)00362-4
  • Swetha, P., K. S. S. Devi, and A. S. Kumar. 2014. In-situ trapping and confining of highly redox active quinoline quinones on MWCNT modified glassy carbon electrode and its selective electrocatalytic oxidation and sensing of hydrazine. Electrochimica Acta 147:62–72. doi:10.1016/j.electacta.2014.08.128
  • Tiwari, I., M. Gupta, P. Sinha, and C. E. Banks. 2014. Simultaneous determination of hydrazine and phenyl hydrazine using 4′-(4-carboxyphenyl)-2,2′:6′,2″ terpyridine diacetonitrile triphenylphosphine ruthenium(II) tetrafluoroborate complex functionalized multiwalled carbon nanotubes modified electrode. Materials Research Bulletin 60:166–73. doi:10.1016/j.materresbull.2014.08.012
  • Wang, J., and Z. Lu. 1989. Electrocatalysis and determination of hydrazine compounds at glassy carbon electrodes coated with mixed-valent ruthenium (III, II) cyanide films. Electroanalysis 1:517–21. doi:10.1002/elan.1140010607
  • Wang, Y., and L.-L. Tong. 2010. Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sensors and Actuators B: Chemical 150:43–49. doi:10.1016/j.snb.2010.07.044
  • Yamada, K., K. Yasuda, N. Fujiwara, Z. Siroma, H. Tanaka, Y. Miyazaki, and T. Kobayashi. 2003. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochemistry Communications 5:892–96. doi:10.1016/j.elecom.2003.08.015
  • Yang, Y., S. Chen, Q. Xue, A. Biris, and W. Zhao. 2005. Electron transfer chemistry of octadecylamine-functionalized single-walled carbon nanotubes. Electrochimica Acta 50:3061–67. doi:10.1016/j.electacta.2004.09.027
  • Yavuz, E., K. V. Özdokur, İ. Çakar, S. Koçak, and F. N. Ertaş. 2015. Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochimica Acta 151:72–80. doi:10.1016/j.electacta.2014.11.006
  • Yin, W. X., Z. P. Li, J. K. Zhu, and H. Y. Qin. 2008. Effects of NaOH addition on performance of he direct hydrazine fuel cell. Journal of Power Sources 182:520–23. doi:10.1016/j.jpowsour.2008.04.028
  • Zare, H. R., and A. M. Habibirad. 2006. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine. Journal of Solid State Electrochemistry 10:348–59. doi:10.1007/s10008-005-0683-5
  • Zare, H. R., S. H. Hashemi, and A. Benvidi. 2010. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine. Analytica Chimica Acta 668:182–87. doi:10.1016/j.aca.2010.04.028
  • Zare, H. R., and N. Nasirizadeh. 2007. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine. Electrochimica Acta 52:4153–60. doi:10.1016/j.electacta.2006.11.037
  • Zare, H. R., N. Nasirizadeh, F. Chatraei, and S. Makarem. 2009. Electrochemical behavior of an indenedione derivative electrodeposited on a renewable sol–gel derived carbon ceramic electrode modified with multi-wall carbon nanotubes: Application for electrocatalytic determination of hydrazine. Electrochimica Acta 54:2828–36. doi:10.1016/j.electacta.2008.11.011
  • Zare, H. R., M. R. Shishehbore, D. Nematollahi, and M. S. Tehrani. 2010. Electrochemical behavior of nano-composite containing 4-hydroxy-2-(triphenylphosphonio)phenolate and multi-wall carbon nanotubes spiked in carbon paste and its application for electrocatalytic oxidation of hydrazine. Sensors and Actuators B: Chemical 151:153–61. doi:10.1016/j.snb.2010.09.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.