272
Views
12
CrossRef citations to date
0
Altmetric
Chemometrics

Experimental Design Optimization of the Determination of Total Halogens in Coal by Combustion–Ion Chromatography

, , , &
Pages 2597-2612 | Received 08 Nov 2014, Accepted 09 Apr 2015, Published online: 14 Aug 2015

REFERENCES

  • ASTM D2361–02. 2002. Standard test method for chlorine in coal. W. Conshohocken, PA, USA: ASTM International.
  • ASTM D3761–96. 2002. Standard test method for total fluorine in coal by the oxygen bomb combustion/ion selective electrode method. Reapproved. W. Conshohocken, PA, USA: ASTM International.
  • Barnard, J. A., and J. N. Bradley. 1985. Flame and combustion. New York: Chapman and Hall.
  • Belavi, H., and H. Mönch. 2000. Simultaneous determination of fluorine, chlorine and sulfur in incinerator residues by oxidative high pressure digestion and ion chromatography. Analusis 28: 988–94. doi:10.1051/analusis:2000166
  • Bezerra, M. A., R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965–77. doi:10.1016/j.talanta.2008.05.019
  • Chen, J., G. Liu, Y. Kang, B. Wu, R. Sun, C. Zhou, and D. Wu. 2013. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China. Chemosphere 90: 1925–32. doi:10.1016/j.chemosphere.2012.10.032
  • Chen, Y., C.-J. Liu, G. Jones, S. Fu, and H. Zhan. 2009. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. Journal of Hazardous Materials 171: 948–53. doi:10.1016/j.jhazmat.2009.06.100
  • Cortes-Pena, M. A., L. V. Perez-Arribas, E. M. Leon-Gonzalez, and L. M. Polo-Diez. 2002. Determination of chlorine and bromine in automotive shredder residues by oxygen bomb and ion chromatography. Waste Management & Research 20: 302–07. doi:10.1177/0734242X0202000311
  • Domazetis, G., M. Raoarun, B. D. James, J. Liesegang, P. J. Pigram, N. Brack, and R. Glaisher. 2006. Analytical and characterization studies of organic and inorganic species in brown coal. Energy & Fuels 20: 1556–64. doi:10.1021/ef0502251
  • Dressler, V. L., D. Pozebon, E. L. M. Flores, J. N. G. Paniz, and E. M. M. Flores. 2002. Potentiometric determination of fluoride in geological and biological samples following pyrohydrolytic decomposition. Analytica Chimica Acta 466: 117–23. doi:10.1016/S0003-2670(02)00550-0
  • Finkelman, R. B. 2004. Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology 59: 19–24. doi:10.1016/j.coal.2003.11.002
  • Flores, E. M. M., J. S. Barin, M. F. Mesko, and G. Knapp. 2007. Sample preparation techniques based on combustion reactions in closed vessels – A brief overview and recent applications. Spectrochimica Acta Part B: Atomic Spectroscopy 62: 1051–64. doi:10.1016/j.sab.2007.04.018
  • Flores, E. M. M., M. F. Mesko, D. P. Moraes, J. S. F. Pereira, P. A. Mello, J. S. Barin, and G. Knapp. 2008. Determination of halogens in coal after digestion using the microwave-induced combustion technique. Analytical Chemistry 80: 1865–70. doi:10.1021/ac8000836
  • Fung, Y. S., and K. L. Dao. 1995. Oxygen bomb combustion ion chromatography for elemental analysis of heteroatoms in fuel and wastes development. Analytica Chimica Acta 315: 347–55. doi:10.1016/0003-2670(95)00317-S
  • Fung, Y. S., and K. L. Dao. 1996. Elemental analysis of chemical wastes by oxygen bomb combustion-ion chromatography. Analytica Chimica Acta 334: 51–56. doi:10.1016/S0003-2670(96)00320-0
  • Gao, Y.-C., Q.-F. Gao, M.-X. Sun, Z.-X. Zhu, and Z.-H. Chen. 2007. Simultaneous measurements of arsenic, bromine, and iodine in coal and coke by inductively coupled plasma-mass spectrometer. Chinese Journal of Analytical Chemistry 35: 1175–78. doi:10.1016/S1872-2040(07)60077-2
  • Geng, W., T. Nakajima, H. Takanashi, and A. Okhi. 2007. Determination of total fluorine in coal by use of oxygen flask combustion method with catalyst. Fuel 86: 715–21. doi:10.1016/j.fuel.2006.08.025
  • Ghasemi, E., F. Raofie, and N. M. Najati. 2011. Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. Leaves. Food Chemistry 126: 1449–53. doi:10.1016/j.foodchem.2010.11.135
  • Guo, S., J. Yang, and Z. Liu. 2006. The fate of fluorine and chlorine during thermal treatment of coals. Environmental Science & Technology 40: 7886–89. doi:10.1021/es0604562
  • Hanrahan, G., and K. Lu. 2006. Application of factorial and response surface methodology in modern experimental design and optimization. Critical Reviews in Analytical Chemistry 36: 141–51. doi:10.1080/10408340600969478
  • Hanrahan, G., J. Zhu, S. Gibani, and D. G. Patil. 2005. Chemometrics and statistics: experimental design. In Encyclopedia of analytical science, 2nd ed., ed. P. J. Worsfold A. Townshend and C. F. Poole, 8–13. Oxford: Elsevier.
  • Harris, D. C. 2007. Quantitative chemical analysis. 7th ed. New York: W.H. Freeman and Company.
  • Kristiana, I., H. Gallard, C. Joll, and J.-P. Croué. 2009. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates. Water Research 43: 4177–86. doi:10.1016/j.watres.2009.06.044
  • Mester, Z., and R. Sturgeon. 2003. Sample preparation for trace element analysis. Amsterdam: Elsevier.
  • Montgomery, D. C., G. C. Runger, and N. F. Hubele. 2007. Engineering statistics, 4th ed. New York: J. Wiley and Sons.
  • Mutihac, L., and R. Mutihac. 2008. Mining in chemometrics. Analytica Chimica Acta 612: 1–18. doi:10.1016/j.aca.2008.02.025
  • Nadkarni, R. A. 1980. Multitechnique multielemental analysis of coal and fly ash. Analytical Chemistry 52: 929–35. doi:10.1021/ac50056a036
  • Nadkarni, R. A., and D. M. Pond. 1983. Application of ion chromatography for determination of selected elements in coal and oil shale. Analytica Chimica Acta 146: 261–66. doi:10.1016/S0003-2670(00)80614-5
  • Niemirycz, E., A. Kaczwarzyk, and J. Blazejowski. 2005. Extractable organic halogens (EOX) in sediments from selected Polish rivers and lakes – a measure of the quality of the inland water environment. Chemosphere 61: 92–97. doi:10.1016/j.chemosphere.2005.03.071
  • Peng, B., D. Wu, J. Lai, H. Xiao, and P. Li. 2012. Simultaneous determination of halogens (F, Cl, Br, and I) in coal using pyrohydrolysis combined with ion chromatography. Fuel 94: 629–31. doi:10.1016/j.fuel.2011.12.011
  • Pereira, J. S. F., C. M. Moreira, C. N. Albers, O. S. Jacobsen, and E. M. M. Flores. 2011. Determination of total organic halogen (TOX) in humic acids after microwave-induced combustion. Chemosphere 83: 281–86. doi:10.1016/j.chemosphere.2010.12.068
  • Putschew, A., M. Mania, and M. Jekel. 2003. Occurrence and source of brominated organic compounds in surface waters. Chemosphere 52: 399–407. doi:10.1016/S0045-6535(03)00195-4
  • Ratafia-Brown, J. A. 1994. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Processing Technology 39: 139–57. doi:10.1016/0378-3820(94)90177-5
  • Razus, D., C. Movileanu, V. Brinzea, and D. Oancea. 2006. Explosion pressures of hydrocarbon–air mixtures in closed vessels. Journal of Hazardous Materials 135: 58–65. doi:10.1016/j.jhazmat.2005.10.061
  • Razus, D., C. Movileanu, and D. Oancea. 2007. The rate of pressure rise of gaseous propylene–air explosions in spherical and cylindrical enclosures. Journal of Hazardous Materials 139: 1–8. doi:10.1016/j.jhazmat.2006.05.103
  • Sahu, J. N., J. Acharya, and B. C. Meikap. 2009. Response surface modeling and optimization of chromium(VI) removal from aqueous solutions using tamarind wood activated carbon in batch process. Journal of Hazardous Materials 172: 818–25. doi:10.1016/j.jhazmat.2009.07.075
  • Sánchez, M. S., L. A. Sarabia, and M. C. Ortiz. 2012. On the construction of experimental designs for a given task by jointly optimizing several quality criteria: Pareto-optimal experimental designs. Analytica Chimica Acta 754: 39–46. doi:10.1016/j.aca.2012.10.014
  • Souza, G. B., E. N. V. M. Carrilho, C. V. Oliveira, A. R. A. Nogueira, and J. A. Nóbrega. 2002. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 57: 2195–201. doi:10.1016/s0584-8547(02)00180-5
  • Sredović, I., and Lj. Rajaković. 2010. Pyrohydrolytic determination of fluorine in coal: A chemometric approach. Journal of Hazardous Materials 177: 445–51. doi:10.1016/j.jhazmat.2009.12.053
  • Sun, M., Y. Gao, B. Wei, and X. Wu. 2010. Determination of iodine and bromine in coal and atmospheric particles by inductively coupled plasma mass spectrometry. Talanta 81: 473–76. doi:10.1016/j.talanta.2009.12.026
  • Vera Candioti L., M. M. De Zan, M. S. Cámara, and H. C. Goicoechea. 2014. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124: 123–38. doi:10.1016/j.talanta.2014.01.034
  • Vinder, A., and M. Simonič. 2012. Removal of AOX from waste water with mixed surfactants by MEUF. Desalination 289: 51–57. doi:10.1016/j.desal.2012.01.007
  • Wang, W., Y. Qin, J. Wang, J. Li, and D. J. Weiss. 2010. A preliminary method for determining acceptable trace element levels in coal. Energy 35: 70–76. doi:10.1016/j.energy.2009.08.028
  • Warych, J., and M. Szymanowski. 2001. Model of the wet limestone flue gas desulfurization process for cost optimization. Industrial & Engineering Chemistry Research 40: 2597–05.
  • Wood, R. A., L. S. Dale, and K. W. Riley. 2003. A borate fusion method for the determination of fluorine in coal. Fuel 82: 1587–90. doi:10.1016/S0016-2361(03)00090-5
  • Wu, D., H. Deng, W. Wang, and H. Xiao. 2007. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition. Analytica Chimica Acta 601: 183–88. doi:10.1016/j.aca.2007.08.041
  • Xu, M., R. Yan, C. Zheng, Y. Qiao, J. Han, and C. Sheng. 2003. Status of trace element emission in a coal combustion process: A review. Fuel Processing Technology 85: 215–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.