1,190
Views
42
CrossRef citations to date
0
Altmetric
Biosensors

Biosensors for Blood Glucose and Diabetes Diagnosis: Evolution, Construction, and Current Status

&
Pages 2509-2532 | Received 23 Jan 2015, Accepted 16 Apr 2015, Published online: 14 Aug 2015

REFERENCES

  • Abbas, A. A. A., and W. A. Mahmood. 2007. Isolation, characterization and immobilization of glucose oxidase from Aspergillus niger 1-isolation and purification. Mesopotamia Journal of Agriculture 35: 1–10.
  • Alizadeh, T., and S. Mirzagholipur. 2014. A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite. Sensors and Actuators B: Chemical 198: 438–47. doi:10.1016/j.snb.2014.03.049
  • Arora, P., A. Sindhu, N. Dilbaghi, and A. Chaudhury. 2011. Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics 28: 1–12. doi:10.1016/j.bios.2011.06.002
  • Asgher, M., M. Shahid, S. Kamal, and H. M. N Iqbal. 2014. Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. Journal of Molecular Catalysis B: Enzymatic 101: 56–66. doi:10.1016/j.molcatb.2013.12.016
  • Bankar, S. B., M. V Bule, R. S. Singhal, and L. Ananthanarayan. 2009a. Glucose oxidase–an overview. Biotechnology Advances 27: 489–501. doi:10.1016/j.biotechadv.2009.04.003
  • Bankar, S. B., M. V. Bule, R. S. Singhal, and L. Ananthanarayan. 2009b. Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food and Bioprocess Technology 2: 344–52. doi:10.1007/s11947-007-0050-x
  • Baratella, D., M. Magro, G. Sinigaglia, R. Zboril, G. Salviulo, and F. Vianello. 2013. A glucose biosensor based on surface active maghemite nanoparticles. Biosensors and Bioelectronics 45: 13–18. doi:10.1016/j.bios.2013.01.043
  • Bernhauer, K. 1928. Beiträge zur Enzymchemie der durch Aspergillus niger bewirkten Säurebildungsvorgänge I. Hoppe-Seyler´s Zeitschrift für physiologische Chemie 177: 86–106. doi:10.1515/bchm2.1928.177.1-2.86
  • Brutsaert, E., M. Carey, and J. Zonszein. 2014. The clinical impact of inpatient hypoglycemia. Journal of Diabetes and Complications 28: 565–72. doi:10.1016/j.jdiacomp.2014.03.002
  • Candy, D. J. 1979. Glucose oxidase and other enzymes of hydrogen peroxide metabolism from cuticle of Schistocerca americana gregaria. Insect Biochemistry 9: 661–65. doi:10.1016/0020-1790(79)90106-9
  • Cerqueira, M. R. F., D. Grasseschi, R. C. Matos, and L. Angnes. 2014. A novel functionalisation process for glucose oxidase immobilization in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations. Talanta 126: 20–26. doi:10.1016/j.talanta.2014.02.048
  • Chang, G., Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki. 2010. Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays. Talanta 83: 61–65. doi:10.1016/j.talanta.2010.08.039
  • Cirillo, G., F. P. Nicoletta, M. Curcio, U. G. Spizzirri, N. Picci, and F. Iemma. 2014. Enzyme immobilization on smart polymers: Catalysis on demand. Reactive and Function Polymers 83: 62–69. doi:10.1016/j.reactfunctpolym.2014.07.010
  • Clark, L. C., Jr., and C. Lyons. 1962. Electrode system for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29–45. doi:10.1111/j.1749-6632.1962.tb13623.x
  • Cui, H.-F., K. Zhang, Y.-F. Zhang, Y.-L. Sun, J. Wang, W.-D. Zhang, and J. H. T. Luong. 2013. Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosensors and Bioelectronics 46: 113–18. doi:10.1016/j.bios.2013.02.029
  • Dai, G., J. Li, and L. Jiang. 2002. Difference in enzyme activity and conformation of glucose oxidase before and after purification. Colloids and Surface B: Biointerfaces 24: 171–76. doi:10.1016/s0927–7765(01)00239–9
  • Das, A. P., P. S. Kumar, and S. Swain. 2014. Recent advances in biosensor based endotoxin detection. Biosensors and Bioelectronics 51: 62–75. doi:10.1016/j.bios.2013.07.020
  • Deng, H., A. K. L. Teo, and Z. Gao. 2014. An interference-free glucose biosensor based on a novel low potential redox polymer mediator. Sensors and Actuators B: Chemical 191: 522–28. doi:10.1016/j.snb.2013.10.059
  • Dhanekar, S., and S. Jain. 2013. Porous siliconbiosensor: Currentstatus. Biosensors and Bioelectronics 41: 54–64.
  • Dhara, K., J. Stanley, T. Ramachandran, B. G. Nair, and T. G. Satheesh Babu. 2014. Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sensors and Actuators B: Chemical 195: 197–205. doi:10.1016/j.snb.2014.01.044
  • D’Orazio, P. 2003. Biosensors in clinical chemistry. Clinical Chimica Acta 334: 41–69.
  • Eichenseer, H., M. C. Mathews, J. L. Bi, J. B. Murphy, and G. W. Felton. 1999. Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Archives of Insect Biochemistry 42: 99–109.
  • Ensafi, A. A., M. M. Abarghoui, and B. Rezaei. 2014. A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochimica Acta 123: 219–26. doi:10.1016/j.electacta.2014.01.031
  • Eriksson, K.-O., I. Kourteva, K. Yao, J.-L. Liao, F. Kilár, S. Hjertén, and G. Chaga. 1987. Application of high-performance chromatographic and electrophoretic methods to the purification and characterization of glucose oxidase and catalase from Penicillium chrysogenum. Journal of Chromatography A 397: 239–49. doi:10.1016/s0021-9673(01)85007-x
  • Eryomin, A. N., M. V. Makarenko, L. A. Zhukovskaia, and R. V. Mikhailova. 2006. Isolation and characterization of extracellular glucose oxidase from Penicillium adametzii LF F-2044.1. Applied Biochemistry and Microbiology 42: 304–11. doi:10.1134/s000368380603015x
  • Ferri, S., K. Kojima, and K. Sode. 2011. Review of glucose oxidases and glucose dehydrogenases. Journal of Diabetes Science and Technology 5: 1068–76. doi:10.1177/193229681100500507
  • Golden, S. H., and T. Sapir. 2012. Methods for insulin delivery and glucose monitoring in diabetes: Summary of a comparative effectiveness review. Journal of Managed Care Pharmacy 18: S1–S17.
  • Haghighi, B., and S. Bozorgzadeh. 2011. Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: A novel route for the fabrication of an oxygen sensor and a glucose biosensor. Analytica Chimica Acta 697: 90–97. doi:10.1016/j.aca.2011.04.032
  • Haghighi, B., S. Bozorgzadeh, and L. Gorton. 2011. Fabrication of a novel electrochemiluminescence glucose biosensor using Au nanoparticles decorated multiwalled carbon nanotubes. Sensors and Actuators B: Chemical 155: 577–83. doi:10.1016/j.snb.2011.01.010
  • Han, L., S. Zhang, L. Han, D.-P. Yang, C. Hou, and A. Liu. 2014. Porous gold cluster film prepared from Au@BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochimica Acta 138: 109–14. doi:10.1016/j.electacta.2014.06.095
  • Haouz, A., C. Twist, C. Zentz, P. Tauc, and B. Alpert. 1998. Dynamic and structural properties of glucose oxidase enzyme. European Biophysics Journal 27: 19–25. doi:10.1007/s002490050106
  • Harris, J. M., G. P. Lopez, and W. M. Reichert. 2012. Silica-dispersed glucose oxidase for glucose sensing: In vitro testing in serum and blood and the effect of condensation pH. Sensors and Actuators B: Chemical 174: 373–79. doi:10.1016/j.snb.2012.08.046
  • Harris, J. M., C. Reyes, and G. P. Lopez. 2013. Common causes of glucose oxidase instability in in vivo biosensing: A brief review. Journal of Diabetes Science and Technology 7: 1030–38.
  • Hasan, A., M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, M. A. Hariri, Y.-k Lee, and A. A. Jaffa. 2014. Recent advances in application of biosensors in tissue engineering. BioMed Research International 2014: 1–18. doi:10.1155/2014/307519
  • Ho, M.-L., J.-C. Wang, T.-Y. Wang, C.-Y. Lin, J. F. Zhu, Y.-A. Chen, and T.-C. Chen. 2014. The construction of glucose biosensor based on crystalline iridium(III)-containing coordination polymers with fiber-optic detection. Sensors and Actuators B: Chemical 190: 479–85. doi:10.1016/j.snb.2013.08.100
  • Homma, T., T. Ichimura, M. Kondo, T. Kuwahara, and M. Shimomura. 2014. Covalent immobilization of glucose oxidase on the film prepared by electrochemical polymerization of N-phenylglycine for amperometric glucose sensing. European Polymer Journal 51: 130–35. doi:10.1016/j.eurpolymj.2013.12.005
  • Hui, Y., L. Nan, X. Jing-Zhong, and Z. Jun-Jie. 2005. A glucose biosensor based on immobilization of glucose oxidase in chitosan network matrix. Chinese Journal of Chemistry 23: 275–79. doi:10.1002/cjoc.200590275
  • Kalisz, H. M., H.-J. Hecht, D. Schomburg, and R. D. Schmid. 1991. Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1080: 138–42. doi:10.1016/0167-4838(91)90140-u
  • Kalisz, H. M., J. Hendle, and R. D. Schmid. 1997. Structural and biochemical properties of glycosylated and deglycosylated glucose oxidase from Penicillium amagasakiense. Applied Microbiology and Biotechnology 47: 502–07. doi:10.1007/s002530050963
  • Khun, K., Z. H. Ibupoto, J. Lu, M. S. AlSalhi, M. Atif, A. A. Ansari, and M. Willander. 2012. Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sensors and Actuators B: Chemical 173: 698–703. doi:10.1016/j.snb.2012.07.074
  • Kim, K. K.-A., D. R. Fravel, and G. C. Papavizas. 1990a. Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus. Canadian Journal of Microbiology 36: 760–64. doi:10.1139/m90-131
  • Kim, K. K., D. R. Fravel, and G. C. Papavizas. 1990b. Production, purification, and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus. Canadian Journal of Microbiology 36: 199–205. doi:10.1139/m90-034
  • Kommoju, P.-R., Z.-w. Chen, R. C. Bruckner, F. S. Mathews, and M. S. Jorns. 2011. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate. Biochemistry 50: 5521–34. doi:10.1021/bi200388 g
  • Kona, R. P., N. Qureshi, and J. S. Pai. 2001. Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresource Technology 78: 123–26. doi:10.1016/s0960–8524(01)00014-1
  • Lazcka, O., F. J. Del Campo, and F. X. Muñoz. 2007. Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22: 1205–17. doi:10.1016/j.bios.2006.06.036
  • Le, T. T. T., P. D. Tran, X. T. Pham, D. H. Tong, and M. C. Dang. 2010. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection. Advances in Natural Sciences: Nanoscience and Nanotechnology 1: 1–4. doi:10.1088/2043-6254/1/3/035004
  • Leiter, E., F. Marx, T. Pusztahelyi, H. Haas, and I. Pocsi. 2004. Penicillium chrysogenum glucose oxidase - a study on its antifungal effects. Journal of Applied Microbiology 97: 1201–09. doi:10.1111/j.1365-2672.2004.02423.x
  • Leskovac, V., S. Trivic, G. Wohlfahrt, J. Kandrac, and D. Pericin. 2005. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. The International Journal of Biochemistry & Cell Biology 37: 731–750.
  • Li, G., J. Lian, X. Zheng, and J. Cao. 2010. Electrogenerated chemiluminescence biosensor for glucose based on poly(luminol–aniline) nanowires composite modified electrode. Biosensors and Bioelectronics 26: 643–48. doi:10.1016/j.bios.2010.07.003
  • Lustman, P. J., R. J. Anderson, K. E. Freedland, M. de Groot, R. M. Carney, and R. E. Clouse. 2000. Depression and poor glycemic control: A meta-analytic review of the literature. Diabetes Care 23: 934–42. doi:10.2337/diacare.23.7.934
  • Mahdizadeh, F., and M. Eskandarian. 2014. Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: Corrosion controlling of boilers. Journal of Industrial and Engineering Chemistry 20: 2378–83. doi:10.1016/j.jiec.2013.10.016
  • Mathew, M., and N. Sandhyarani. 2013. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase. Electrochimica Acta 108: 274–80. doi:10.1016/j.electacta.2013.07.010
  • Mello, L. D., and L. T. Kubota. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry 77: 237–56. doi:10.1016/s0308-8146(02)00104-8
  • Monošik, R., M. Streďansky, K. Lušpai, P. Magdolen, and E. Šturdik. 2012. Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode. Enzyme and Microbial Technology 50: 227–32. doi:10.1016/j.enzmictec.2012.01.004
  • Murray, F. R., D. J. Llewellyn, W. J. Peacock, and E. S. Dennis. 1997. Isolation of the glucose oxidase gene from Talaromyces flavus and characterization of its role in the biocontrol of Verticillium dahliae. Current Genetics 32: 367–75. doi:10.1007/s002940050290
  • Nichols, S. P., A. Koh, W. L. Storm, J. H. Shin, and M. H. Schoenfisch. 2013. Biocompatible materials for continuous glucose monitoring devices. Chemical Reviews 113: 2528–49. doi:10.1021/cr300387j
  • Nord, F. F., and W. Engel. 1938. Beobachtungen bei der Vergarung von Biosen durch Fusarium lini. Biochem. Z. 296: 153–70.
  • Peng, B., J. Lu, A. S. Balijepalli, T. C. Major, B. E. Cohan, and M. E. Meyerhoff. 2013. Evaluation of enzyme-based tear glucose electrochemical sensors over a wide range of blood glucose concentrations. Biosensors and Bioelectronics 49: 204–09. doi:10.1016/j.bios.2013.05.014
  • Pohanka, M. 2015. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers 69: 1–13. doi:10.2478/s11696-014-0542-x
  • Pohanka, M., J. Románek, and J. Pikula. 2012. Acute poisoning with sarin causes alteration in oxidative homeostasis and biochemical markers in Wistar rats. Journal of Applied Biomedicine 10: 187–93. doi:10.2478/v10136-012-0010-2
  • Pohanka, M., and P. Skladal. 2008. Electrochemical biosensors – principles and applications. Journal of Applied Biomedicine 6: 57–64.
  • Pulci, V., R. D’Ovidio, M. Petruccioli, and F. Federici. 2004. The glucose oxidase of Penicillium variabile P16: Gene cloning, sequencing and expression. Letters in Applied Microbiology 38: 233–38. doi:10.1111/j.1472-765x.2004.01470.x
  • Pundir, C. S., and R. Devi. 2014. Biosensing methods for xanthine determination: A review. Enzyme and Microbial Technology 57: 55–62. doi:10.1016/j.enzmictec.2013.12.006
  • Putzbach, W., and N. J. Ronkainen. 2013. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors 13: 4811–40. doi:10.3390/s130404811
  • Qiu, C., X. Wang, X. Liu, S. Hou, and H. Ma. 2012. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochimica Acta 67: 140–46. doi:10.1016/j.electacta.2012.02.011
  • Raba, J., and H. A. Mottola. 1995. Glucose oxidase as an analytical reagent. Critical Reviews in Analytical Chemistry 25: 1–42. doi:10.1080/10408349508050556
  • Ramachandran, S., P. Fontanille, A. Pandey, and C. Larroche. 2006. Gluconic acid: Properties, applications and microbial production. Food Technology and Biotechnology 44: 185–95.
  • Ramasamy, K., R. L. Kelley, and C. A. Reddy. 1985. Lack of lignin degradation by glucose oxidase-negativemutants of Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications 131: 436–41.
  • Ritter, D. W., J. R. Roberts, and M. J. McShane. 2013. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity. Enzyme and Microbial Technology 52: 279–85. doi:10.1016/j.enzmictec.2013.01.004
  • Sabzghabaee, A. M., N. Eizadi-Mood, F. Gheshlaghi, N. Adib, and L. Safaeian. 2011. Is there a relationship between admission blood glucose level following acute poisoning and clinical outcome? Archives of Medical Science 1: 81–86. doi:10.5114/aoms.2011.20608
  • Sassolas, A., L. J. Blum, and B. D. Leca-Bouvier. 2012. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances 30: 489–511. doi:10.1016/j.biotechadv.2011.09.003
  • Sukhacheva, M. V., M. E. Davydova, and A. I. Netrusov. 2004. Production of Penicillium funiculosum 433 glucose oxidase and its properties. Applied Biochemistry and Microbiology 40: 25–29. doi:10.1023/b:abim.0000010346.47923.6c
  • Swoboda, B. E., and V. Massey. 1965. Purification and properties of the glucose oxidase from Aspergillus niger. The Journal of Biological Chemistry 240: 2209–15. doi:
  • Tang, L., R. Yang, X. Hua, C. Yu, W. Zhang, and W. Zhao. 2014. Preparation of immobilized glucose oxidase and its application in improving breadmaking quality of commercial wheat flour. Food Chemistry 161: 1–7. doi:10.1016/j.foodchem.2014.03.104
  • Toghill, K. E., and R. Compton. 2010. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Sciences 5: 1246–301.
  • Tsujimura, S., S. Kojima, K. Kano, T. Ikeda, M. Sato, H. Sanada, and H. Omura. 2006. Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Bioscience, Biotechnology, and Biochemistry 70: 654–59. doi:10.1271/bbb.70.654
  • Turkmen, E., S. Z. Bas, H. Gulce, and S. Yildiz. 2014. Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode. Electrochimica Acta 123: 93–102. doi:10.1016/j.electacta.2013.12.189
  • Turner, A. P. F. 2000. Biosensors: Sense and sensitivity. Science 290: 1315–17.
  • Turner, A. P. F. 2013. Biosensors: Sense and sensibility. Chemical Society Reviews 42: 3184–96.
  • Umpierrez, G. E., S. D. Isaacs, N. Bazargan, X. You, L. M. Thaler, and A. E. Kitabchi. 2002. Hyperglycemia: An independent marker of in-hospital mortality in patients with undiagnosed diabetes. The Journal of Clinical Endocrinology & Metabolism 87: 978–82. doi:10.1210/jcem.87.3.8341
  • U.S. Food and Drug Administration. D. G. Shultz 2009. FDA Public Health Notification: Potentially Fatal Errors with GDH-PQQ* Glucose Monitoring Technology. Cited 2015–12-01. from: <http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm176992.htm> (accessed 21 March 2013).
  • Usman Ali, S. M., O. Nur, M. Willander, and B. Danielsson. 2010. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sensors and Actuators B: Chemical 145: 869–74. doi:10.1016/j.snb.2009.12.072
  • Velusamy, V., K. Arshak, O. Korostynska, K. Oliwa, and C. Adley. 2010. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances 28: 232–54. doi:10.1016/j.biotechadv.2009.12.004
  • Wang, A.-J., Y.-F. Li, Z.-H. Li, J.-J. Feng, Y.-L. Sun, and J.-R. Chen. 2012. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles. Materials Science and Engineering: C 32: 1640–47. doi:10.1016/j.msec.2012.04.055
  • Wang, J. 2008. Electrochemical glucose biosensors. Chemical Reviews 108: 814–25.
  • World Health Organization. 2013. Diabetes. Cited 2014–01-07. <http://www.who.int/mediacentre/factsheets/fs312/en/> (accessed January 2015).
  • Witt, S., M. Singh, and H. Kalisz. 1998. Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. Applied and Environmental Microbiology 64: 1405–11.
  • Witt, S., G. Wohlfahrt, D. Schomburg, H. J. Hecht, and H. M. Kalisz. 2000. Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of β-d-glucose. Biochemical Journal 347(2): 553–59. doi:10.1042/0264-6021:3470553
  • Wong, C. M., K. H. Wong, and X. D. Chen. 2008. Glucose oxidase: Natural occurrence, function, properties and industrial applications. Applied Microbiology and Biotechnology 78: 927–38. doi:10.1007/s00253-008-1407-4
  • Yamaoka, H., Y. Yamashita, S. Ferri, and K. Sode. 2008. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Biotechnology Letters 30: 1967–72. doi:10.1007/s10529-008-9777-3
  • Yamashita, Y., S. Ferri, M. L. Huynh, H. Shimizu, H. Yamaoka, and K. Sode. 2013. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Enzyme and Microbial Technology 52: 123–28. doi:10.1016/j.enzmictec.2012.11.002
  • Zargoosh, K., M. J. Chaichi, M. Shamsipur, S. Hossienkhani, S. Asghari, and M. Qandalee. 2012. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta 93: 37–43. doi:10.1016/j.talanta.2011.11.029
  • Zhang, Y., Y. Li, W. Wu, Y. Jiang, and B. Hu. 2014. Chitosan coated on the layers’ glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor. Biosensors and Bioelectronics 60: 271–76. doi:10.1016/j.bios.2014.04.035
  • Zhao, W., Y. Ni, Q. Zhu, R. Fu, X. Huanf, and J. Shen. 2013. Innovative biocompatible nanospheres as biomimetic platform for electrochemical glucose biosensor. Biosensors and Bioelectronics 44: 1–5. doi:10.1016/j.bios.2012.12.036
  • Zong, N., and C. Wang. 2004. Induction of nicotine in tobacco by herbivory and its relation to glucose oxidase activity in the labial gland of three noctuid caterpillars. Chinese Science Bulletin 49: 1596–1601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.