551
Views
21
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Determination of Hydrazine at Gold and Platinum Nanoparticles Modified Poly(L-Serine) Glassy Carbon Electrodes

, &
Pages 1015-1031 | Received 16 Dec 2014, Accepted 18 Apr 2015, Published online: 06 Apr 2016

References

  • Ameena, S., M. S. Akhtarb, and H. S. Shin. 2012. Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sensor. Actuat. B 173:177–83. doi:10.1016/j.snb.2012.06.065
  • Amlathe, S., and V. K. Gupta. 1988. Spectrophotometric determination of trace amounts of hydrazine in polluted water. Analyst 113:1481–83. doi:10.1039/AN9881301481
  • Ardakani, M. M., P. E. Karami, P. Rahimi, H. R. Zare, and H. Naeimi. 2007. Hydroxymethylation of α-substituted nitroacetates. Electrochim. Acta 52:6118.
  • Bakır, Ç. C., N. Şahin, R. Polat, and Z. Dursun. 2011. Electrocatalytic reduction of oxygen on bimetallic copper–gold nanoparticles–multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 662:275–80. doi:10.1016/j.jelechem.2011.06.016
  • Bergamini, M. F., D. P. Santos, and M. V. B. Zanoni. 2010. Determination of isoniazid in human urine using screen-printed carbon electrode modified with poly-l-histidine. Bioelectrochemistry 77:133–38. doi:10.1016/j.bioelechem.2009.07.010
  • Budkuley, J. S. 1992. Determination of hydrazine and sulphite in the presence of one another. Mikrochim. Acta 108:103–05. doi:10.1007/bf01240376
  • Cakar, İ., K. V. Özdokur, B. Demir, E. Yavuz, D. O. Demirkol, S. Koçak, S. Timur, and F. N. Ertaş. 2013. Molybdenum oxide/platinum modified glassy carbon electrode: A novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications. Sensor. Actuat. B 185:331–36. doi:10.1016/j.snb.2013.04.106
  • Chitravathi, S., B. E. K. Swamy, G. P. Mamatha, and B. S. Sherigara. 2011. Simultaneous electrochemical determination of dopamine and ascorbic acid using poly (L-serine) modified carbon paste electrode. J. Mol. Liq. 160:193–99. doi:10.1016/j.molliq.2011.03.019
  • Cleaves, H. J., II. 2010. The origin of the biologically coded amino acids. J. Theor. Biol. 263:490–98. doi:10.1016/j.jtbi.2009.12.014
  • Ebadi, M. 2003. Electrocatalytic oxidation and flow amperometric detection of hydrazine on a dinuclear ruthenium phthalocyanine-modified electrode. Can. J. Chem. 81:161–68. doi:10.1139/v03–012
  • El-Deab, M. S., T. Sotomura, and T. Ohsaka. 2005. Oxygen reduction at electrochemically deposited crystallography oriented Au(100)-like gold nanoparticles. Electrochem. Commun. 7:29–34. doi:10.1016/j.elecom.2004.10.010
  • Ensafi, A. A., and E. Mirmomtaz. 2005. Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. J. Electroanal. Chem. 583:176–83. doi:10.1016/j.jelechem.2005.01.042
  • Geraldo, D., C. Linares, Y.-Y. Chen, S. Ureta-Zañartu, and J. H. Zagal. 2002. Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation. Electrochem. Commun. 4:182–87. doi:10.1016/s1388-2481(01)00300-9
  • Gilbert, R., R. Rioux, and S. E. Saheb. 1984. Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Anal. Chem. 56:106–09. doi:10.1021/ac00265a029
  • Golabi, S. M., H. R. Zare, and M. Hamzehloo. 2001. Electrocatalytic oxidation of hydrazine at a pyrocatechol violet (PCV) chemically modified electrode. Microchem. J. 69:13–23. doi:10.1016/s0026-265x(00)00158-2
  • Huerta, F., E. Morallón, C. Quijada, J. L. Vázquez, and L. E. A. Berlouis. 2000. Potential modulated reflectance study of the electrooxidation of simple amino acids on Pt(111) in acidic media. J. Electroanal. Chem. 489:92–95. doi:10.1016/s0022-0728(00)00202-3
  • Jana, D., A. Dandapat, and G. De. 2009. Au@Pd core–shell nanoparticle incorporated alumina sols and coatings: Transformation of Au@Pd to Au–Pd alloy nanoparticles. J. Phys. Chem. C 113:9101–07. doi:10.1021/jp810673x
  • Jayasri, D., and S. S. Narayanan. 2007. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. J. Hazard. Mater. 144:348–54. doi:10.1016/j.jhazmat.2006.10.038
  • Kim, S. K., Y. N. Jeong, M. S. Ahmed, J.-M. You, H. C. Choi, and S. Jeon. 2011. Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP/MWCNTs–Pd nanoparticles. Sensor. Actuat. B 153:246–51. doi:10.1016/j.snb.2010.10.039
  • Koçak, S., and B. Aslışen. 2014. Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sensor. Actuat. B 196:610–18. doi:10.1016/j.snb.2014.02.061
  • Koçak, S., B. Aslışen, and Ç. C. Koçak. 2016. Determination of hydrazine at Platinum nanoparticle and Poly(Bromocresol Purple) modified carbon nanotube electrode. Analytical Letters 49:990–1003. doi:10.1080/00032719.2015.1038548
  • Koçak, S., Z. Dursun, and F. N. Ertaş. 2011. Electrocatalytic oxidation of methanol at Pd and Pt ad-layer modified Au(111) electrodes in alkaline solution. Turk. J. Chem. 35:711.
  • Koçak, S., F. N. Ertaş, and Z. Dursun. 2013. Electrochemical deposition and behavior of mixed-valent molybdenum oxide film at glassy carbon and ITO electrodes. Applied Surface Science 265:205–13. doi:10.1016/j.apsusc.2012.10.170
  • Lakard, B. 2004. Ab initio study of amino acids containing hydroxyl groups (serine, threonine and tyrosine). J. Mol. Struc. 681:183–89. doi:10.1016/j.theochem.2004.04.067
  • Li, C. 2006. Voltammetric determination of tyrosine based on an l-serine polymer film electrode. Colloid. Surface. B 50:147–51. doi:10.1016/j.colsurfb.2006.05.004
  • Li, J., and X. Lin. 2007. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode. Sensor. Actuat. B 126:527–35. doi:10.1016/j.snb.2007.03.044
  • Li, J., H. Xie, and L. Chen. 2011. A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode. Sensor. Actuat. B 153:239–45. doi:10.1016/j.snb.2010.10.040
  • Li, X., J. Sun, and M. Huang. 2007. Preparation and properties of nanocomposites of polyaniline and metal nanoparticles. Progr. Chem. 19:787.
  • Narayanan, R., and M. A. El-sayed. 2005. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 109:12663–76. doi:10.1021/jp051066p
  • Ozoemena, K. I., and T. Nyokong. 2005. Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162–68. doi:10.1016/j.talanta.2005.02.030
  • Pang, X., D. He, S. Luo, and Q. Cai. 2009. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensor. Actuat. B 137:134–38. doi:10.1016/j.snb.2008.09.051
  • Pillay, J., K. I. Ozoemena, R. T. Tshikhudo, and R. M. Moutloali. 2010. Monolayer-protected clusters of gold nanoparticles: Impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection. Langmuir 26:9061–68. doi:10.1021/la904463 g
  • Prodromidis, M. I. 2010. Impedimetric immunosensors – A review. Electrochim. Acta 55:4227–33. doi:10.1016/j.electacta.2009.01.081
  • Revenga-Parra, M., E. Lorenzo, and F. Pariente. 2005. Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: Application to the construction of hydrazine sensors. Sensor. Actuat. B 107:678–87. doi:10.1016/j.snb.2004.11.053
  • Rosca, V, and M. T. M. Koper. 2008. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochim. Acta 53:5199–205. doi:10.1016/j.electacta.2008.02.054
  • Safavi, A., F. Abbasitabar, and M. R. H. Nezhad. 2007. Simultaneous kinetic spectrophotometric determination of isoniazid and hydrazine using H-point standard addition method. Chem. Anal. 52:835.
  • Safavi, A., and M. A. Karimi. 2002. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 58:785–92. doi:10.1016/s0039-9140(02)00362-4
  • Sandoval, A. P., J. M. Orts, A. Rodes, and J. M. Feliu. 2013. A comparative study of the adsorption and oxidation of L-alanine and L-serine on Au(100), Au(111) and gold thin film electrodes in acid media. Electrochim. Acta 89:72–83. doi:10.1016/j.electacta.2012.10.052
  • Saxena, T., L. Karumbaiah, and C. M. Valmikinathan. 2014. Chapter 3 – Proteins and poly(amino acids), natural and synthetic biomedical polymers. San Diego, CA: Elsevier.
  • Yamada, K., K. Yasuda, N. Fujiwara, Z. Siroma, H. Tanaka, Y. Miyazaki, and T. Kobayashi. 2003. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochem. Commun. 5:892–96. doi:10.1016/j.elecom.2003.08.015
  • Yavuz, E., K. V. Özdokur, İ. Çakar, S. Koçak, and F. N. Ertaş. 2015. Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochim. Acta 151:72–80. doi:10.1016/j.electacta.2014.11.006
  • Yin, W. X., Z. P. Li, J. K. Zhu, and H. Y. Qin. 2008. Effects of NaOH addition on performance of the direct hydrazine fuel cell. J. Power Sources 182:520–23. doi:10.1016/j.jpowsour.2008.04.028
  • Zhen, C.-H., S.-G. Sun, C.-J. Fan, S.-P. Chen, B.-W. Mao, and Y.-J. Fan. 2004. In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions. Electrochim. Acta 49:1249–55. doi:10.1016/j.electacta.2003.09.048
  • Zheng, L., and J.-F. Song. 2009. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sensor. Actuat. B 135:650–55. doi:10.1016/j.snb.2008.09.035
  • Zhou, W. P., A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus, and A. Wieckowski. 2006. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110:13393–98. doi:10.1021/jp061690 h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.