192
Views
6
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Determination of Hydroquinone with a Carbon Nanotube/Polyurethane Resin Composite Electrode

&
Pages 1513-1525 | Received 11 Jun 2015, Accepted 22 Oct 2015, Published online: 26 May 2016

References

  • Agüí, L., P. Yáñes-Sedeño, and J. M. Pingarrón. 2008. Role of carbon nanotubes in electroanalytical chemistry: A review. Analytica Chimica Acta 622: 11–47. doi:10.1016/j.aca.2008.05.070
  • Calixto, C. M. F., P. Cervini, and E. T. G. Cavalheiro. 2012. Determination of tetracycline in environmental water samples at a graphite-polyurethane composite electrode. Journal of the Brazilian Chemical Society 23: 938–43. doi:10.1590/s0103-50532012000500020
  • Carvalho, R. C., C. Gouveia-Caridade, and C. M. A. Brett. 2010. Glassy carbon electrodes modified by multi-walled carbon nanotubes and poly(neutral red): A comparative study of different brands and application to electrocatalytic ascorbate determination. Analytical and Bioanalytical Chemistry 398: 1675–85.
  • Cervini, P., L. A. Ramos, and E. T. G. Cavalheiro. 2007. Determination of atenolol at a graphite polyurethane composite electrode. Talanta 72: 206–209. doi:10.1016/j.talanta.2006.10.017
  • Chen, L. Y., Y. H. Tang, K. Wang, C. B. Liu, and S. Luo. 2011. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications 13: 133–37. doi:10.1016/j.elecom.2010.11.033
  • Firth, J., and I. Rix. 1986. Determination of hydroquinone in skin-toning creams using high-performance liquid chromatography. Analyst 111: 129–32. doi:10.1039/an9861100129
  • Gan, T., J. Sun, K. Huang, L. Song, and Y. Li. 2013. A graphene oxide–mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical 177: 412–18. doi:10.1016/j.snb.2012.11.033
  • Gao, W., and C. Legido-Quigley. 2011. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives. Journal of Chromatography A 1218: 4307–311. doi:10.1016/j.chroma.2011.04.064
  • He, J. B., C. L. Chen, and J. H. Liu. 2004. Study of multi-wall carbon nanotubes self-assembled electrode and its application to the determination of carbon monoxide. Sensors and Actuators B: Chemical 99: 1–5. doi:10.1016/j.snb.2003.12.068
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354: 56–58. doi:10.1038/354056a0
  • Jacobs, C. B., M. J. Peairs, and B. J. Venton. 2010. Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta 662: 105–27. doi:10.1016/j.aca.2010.01.009
  • Kissinger, P. T., and W. R. Heineman. 1984. Laboratory techniques in electroanalytical chemistry. New York, USA: Marcel Dekker.
  • Kun, Z., Y. Shuai, T. Dongmei, and Z. Yuyang. 2012. Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode. Journal of Electroanalytical Chemistry 709: 99–105. doi:10.1016/j.jelechem.2013.09.032
  • Lin, Y., Y. Yang, and S. Wu. 2007. Experimental design and capillary electrophoresis for simultaneous analysis of arbutin, kojic acid and hydroquinone in cosmetics. Journal of Pharmaceutical and Biomedical Analysis 44: 279–82. doi:10.1016/j.jpba.2007.02.004
  • Malagutti, A. R., V. G. Zuin, E. T. G. Cavalheiro, and L. H. Mazo. 2006. Determination of rutin in green tea infusions using square-wave voltammetry with a rigid carbon-polyurethane composite electrode. Electroanalysis 18: 1028–34. doi:10.1002/elan.200603496
  • Mendes, R. K., S. Claro-Neto, and E. T. G. Cavalheiro. 2002. Evaluation of a new rigid carbon–castor oil polyurethane composite as an electrode material. Talanta 57: 909–17. doi:10.1016/s0039-9140(02)00122-4
  • Merkoçi, A., M. Pumera, X. Llopis, B. Pérez, M. del Valle, and S. Alegret. 2005. New materials for electrochemical sensing VI: Carbon nanotubes. TrAC Trends in Analytical Chemistry 24: 826–38. doi:10.1016/j.trac.2005.03.019
  • Miller, J. C., and J. N. Miller. 1983. Statistics for analytical chemistry. 3rd ed. New York, USA: Ellis Horwood/Prentice Hall.
  • Oliveira, I. R. W. Z., I. C. Vieira, K. O. Lupetti, O. Fatibello-Filho, V. T. de Favere, and M. C. M. Laranjeira. 2004. Biosensor based on chitosan biopolymer and crude extract of ginger (Zingiber officinales Rosc.) for the determination of hydroquinone in wastewater of photographic process. Anal. Lett. 37: 3111–27. doi:10.1081/al-200040281
  • Pacios, M., M. del Valle, J. Bartroli, and M. J. Esplandiu. 2008. Electrochemical behavior of rigid carbon nanotube composite electrodes. J. Electroanal. Chem. 619–620: 117–24. doi:10.1016/j.jelechem.2008.03.019
  • Pumera, M. 2009. The electrochemistry of carbon nanotubes: Fundamentals and applications. Chemistry 15: 4970–78. doi:10.1002/chem.200900421
  • Pumera, M., A. Merkoçi, and S. Alegret. 2006. Carbon nanotube-epoxy composites for electrochemical sensing. Sens. Actuators, B 113: 617–22. doi:10.1016/j.snb.2005.07.010
  • Qassim, B. B., and H. S. Omaish. 2014. Development of FIA system for the spectrophotometric determination of hydroquinone in pure material and pharmaceutical formulations. Journal of Chemical and Pharmaceutical Research 6: 1548–59.
  • Sadeghi, S., and A. Garmroodi. 2014. Sensitive detection of sulfasalazine at screen printed carbon electrode modified with functionalized multi-walled carbon nanotubes. J. Electroanal. Chem. 727: 171–78.
  • Sanghavi, B. J., O. S. Wolfbeis, T. Hirsch, and N. S. Swami. 2015. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim. Acta 182: 1–41. doi:10.1007/s00604-014-1308-4
  • Santos, S. X., E. T. G. Cavalheiro, and C. M. A. Brett. 2010. Analytical potentialities of carbon nanotube/silicone rubber composite electrodes: Determination of propranolol. Electroanalysis 22: 2776–83. doi:10.1002/elan.201000262
  • Santos, S. X., L. H. Mazo, and E. T. G. Cavalheiro. 2008. The use of a graphite-silicone rubber composite electrode in the determination of rutin. Journal of the Brazilian Chemical Society 19: 1600–606. doi:10.1590/s0103-50532008000800021
  • Semaan, F. S., E. M. Pinto, E. T. G. Cavalheiro, and C. M. A. Brett. 2008. Grafite-castor oil solid composite as electrode material of analysis of furosemide. Electroanalysis 20: 2287–93. doi:10.1002/elan.200804329
  • Silva, P. S., B. C. Gasparini; H. A. Magosso, and A. Spinelli. 2013. Electrochemical behavior of hydroquinone and catechol at a silsesquioxane-modified carbon paste electrode. Journal of the Brazilian Chemical Society 24: 695–99. doi:10.5935/0103-5053.20130079
  • The United States Pharmacopoeia. 1984. 16th. Rockville: United States Pharmacopeia Convention.
  • Thomas, T., R. J. Mascarenhas, O. J. D. Souza, S. Detriche, Z. Mekhalif, and P. Martis. 2014. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine. Talanta 125: 352–60. doi:10.1016/j.talanta.2014.03.027
  • Trabelsi, H., N. Bensalah, and A. Gadri. 2015. Anodic oxidation of aqueous wastes containing hydroquinone on boron doped diamond electrode. Journal of Advanced Oxidation Technologies 18: 155–60.
  • Wang, J. 2005. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17: 7–14. doi:10.1002/elan.200403113
  • Yaoyu, Z., T. Lin, Z. Guangming, Z. Yi, L. Zhen, L. Yuanyuan, C. Jun, Y. Guide, Z. Lu, and Z. Sheng. 2014. Simultaneous determination of hydroquinone and catechol in compost bioremediation using a tyrosinase biosensor and artificial neural networks. Analytical Methods 6: 2371–78. doi:10.1039/c3ay41976b
  • Zare, M. A., M. S. Tehrani, S. W. Husain, and P. A. Azar. 2014. Multiwall carbon nanotube-ionic liquid modified paste electrode as an efficient sensor for the determination of diazepam and oxazepam in real samples. Electroanalysis 26: 2599–606. doi:10.1002/elan.201400305

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.