295
Views
17
CrossRef citations to date
0
Altmetric
IMMUNOASSAY

Determination of Bisphenol A by a Gold Nanoflower Enhanced Enzyme-Linked Immunosorbent Assay

, , , , &
Pages 1492-1501 | Received 25 Jul 2015, Accepted 19 Oct 2015, Published online: 26 May 2016

References

  • Ambrosi, A., F. Airò, and A. Merkoçi. 2009. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Analytical Chemistry 82: 1151–56. doi:10.1021/ac902492c
  • Cao, X., Y. Ye, and S. Liu. 2011. Gold nanoparticle-based signal amplification for biosensing. Analytical Biochemistry 417: 1–16. doi:10.1016/j.ab.2011.05.027
  • Cho, I.-H., and J. Irudayaraj. 2013. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. International Journal of Food Microbiology 164: 70–75. doi:10.1016/j.ijfoodmicro.2013.02.025
  • Chunglok, W., D. K. Wuragil, S. Oaew, M. Somasundrum, and W. Surareungchai. 2011. Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium. Biosensors and Bioelectronics 26: 3584–89. doi:10.1016/j.bios.2011.02.005
  • Edwards, K. A., and A. J. Baeumner. 2007. DNA-oligonucleotide encapsulating liposomes as a secondary signal amplification means. Analytical Chemistry 79: 1806–15. doi:10.1021/ac061471s
  • Gao, Z., M. Xu, L. Hou, G. Chen, and D. Tang. 2013. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Analytical Chemistry 85: 6945–52. doi:10.1021/ac401433p
  • Han, K.-C., E. G. Yang, and D.-R. Ahn. 2012. A highly sensitive, multiplex immunoassay using gold nanoparticle-enhanced signal amplification. Chemical Communications 48: 5895–97. doi:10.1039/c2cc31659e
  • He, Y., and H. Cui. 2012. Fabrication of luminol and lucigenin bifunctionalized gold nnanoparticles/graphene oxide nanocomposites with dual-wavelength chemiluminescence. The Journal of Physical Chemistry C 116: 12953–57. doi:10.1021/jp303304z
  • Lei, J., and H. Ju. 2012. Signal amplification using functional nanomaterials for biosensing. Chemical Society Reviews 41: 2122–34. doi:10.1039/c1cs15274b
  • Liang, J., C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang. 2015. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosensors and Bioelectronics 69: 128–34. doi:10.1016/j.bios.2015.02.026
  • Lin, H., Y. Liu, J. Huo, A. Zhang, Y. Pan, H. Bai, Z. Jiao, T. Fang, X. Wang, Y. Cai, Q. Wang, Y. Zhang, and X. Qian. 2013. Modified enzyme-linked immunosorbent assay strategy using graphene oxide sheets and gold nanoparticles functionalized with different antibody types. Analytical Chemistry 85: 6228–32. doi:10.1021/ac401075 u
  • Liu, D., X. Huang, Z. Wang, A. Jin, X. Sun, L. Zhu, F. Wang, Y. Ma, G. Niu, A. R. Hight Walker, and X. Chen. 2013. Gold nanoparticle-based activatable probe for sensing ultralow levels of prostate-specific antigen. ACS Nano 7: 5568–76. doi:10.1021/nn401837q
  • Liu, D., J. Yang, H.-F. Wang, Z. Wang, X. Huang, Z. Wang, G. Niu, A. R. Hight Walker, and X. Chen. 2014. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Analytical Chemistry 86: 5800–06. doi:10.1021/ac500478 g
  • Lu, C.-H., Y.-W. Wang, S.-L. Ye, G.-N. Chen, and H.-H. Yang. 2012. Ultrasensitive detection of Cu2 + with the naked eye and application in immunoassays. NPG Asia Materials 4: e10. doi:10.1038/am.2012.18
  • Mei, Z., H. Chu, W. Chen, F. Xue, J. Liu, H. Xu, R. Zhang, and L. Zheng 2013. Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosensors and Bioelectronics 39: 26–30. doi:10.1016/j.bios.2012.06.027
  • Nie, X.-M., R. Huang, C.-X. Dong, L.-J. Tang, R. Gui, and J.-H. Jiang. 2014. Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosensors and Bioelectronics 58: 314–19. doi:10.1016/j.bios.2014.03.007
  • Peng, C., X. Duan, G. W. Khamba, and Z. Xie. 2014. Highly sensitive “signal on” plasmonic ELISA for small molecules by the naked eye. Analytical Methods 6: 9616–21. doi:10.1039/c4ay01993 h
  • Peng, C., X. Duan, S. Song, and F. Xue. 2013. Parts per trillion detection of 7-aminonitrazepam by nano-enhanced ELISA. International Journal of Molecular Sciences 14: 19474–83. doi:10.3390/ijms141019474
  • Peng, C. F., Y. W. Chen, W. Chen, C. L. Xu, J. M. Kim, and Z. Y. Jin. 2008. Development of a sensitive heterologous ELISA method for analysis of acetylgestagen residues in animal fat. Food Chemistry 109: 647–53. doi:10.1016/j.foodchem.2007.12.072
  • Peng, C.-F., C.-L. Liu, S.-S. Song, and L.-Q. Liu. 2014. Highly sensitive nano-ELISA for detecting 19-nortestosterone in beef. Food and Agricultural Immunology 25: 423–31. doi:10.1080/09540105.2013.821599
  • Qu, W., Y. Liu, D. Liu, Z. Wang, and X. Jiang. 2011. Copper-mediated amplification allows readout of immunoassays by the naked eye. Angewandte Chemie International Edition 50: 3442–45. doi:10.1002/anie.201006025
  • Wang, W., and H. Cui. 2008. Chitosan-luminol reduced gold nanoflowers: From one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. The Journal of Physical Chemistry C 112: 10759–66. doi:10.1021/jp802028r
  • Xie, J., Q. Zhang, J. Y. Lee, and D. I. C. Wang. 2008. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2: 2473–80. doi:10.1021/nn800442q
  • Yang, X., and Z. Gao. 2015. Enzyme-catalysed deposition of ultrathin silver shells on gold nanorods: A universal and highly efficient signal amplification strategy for translating immunoassay into a litmus-type test. Chemical Communications 51: 6928–31. doi:10.1039/c5cc01286d
  • Zhan, L., W. B. Wu, X. X. Yang, and C. Z. Huang. 2014. Gold nanoparticle-based enhanced ELISA for respiratory syncytial virus. New Journal of Chemistry 38: 2935–40.
  • Zhang, L., Y. Huang, J. Wang, Y. Rong, W. Lai, J. Zhang, and T. Chen. 2015. Hierarchical flowerlike gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157:H7. Langmuir 31: 5537–44. doi:10.1021/acs.langmuir.5b00592
  • Zhang, Q., B. Zhao, J. Yan, S. Song, R. Min, and C. Fan. 2011. Nanotube-based colorimetric probe for ultrasensitive detection of Ataxia telangiectasia mutated protein. Analytical Chemistry 83: 9191–96. doi:10.1021/ac2023684

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.