688
Views
20
CrossRef citations to date
0
Altmetric
ATOMIC SPECTROSCOPY

Determination of Lead in Drinking and Wastewater by Hydride Generation Atomic Absorption Spectrometry

, , , &
Pages 1917-1925 | Received 08 Oct 2015, Accepted 29 Nov 2015, Published online: 07 Jul 2016

References

  • Bakirdere, S., F. Aydın, E. G. Bakirdere, S. Titretir, I. Akdeniz, I. Aydın, E. Yildirim, and Y. Arslan. 2011. From mg/kg to pg/kg levels: A story of trace element determination. Applied Spectroscopy Reviews 46:38–66. doi:10.1080/05704928.2010.520179
  • Bakırdere, S., T. Yaroğlu, N. Tırık, M. Demiröz, A. K. Fidan, O. Maruldalı, and A. Karaca. 2013. Determination of As, Cd, and Pb in tap water and bottled water samples by using optimized GFAAS system with Pd-Mg and Ni as matrix modifiers. Journal of Spectroscopy 2013:1–7. doi:10.1155/2013/824817
  • Berkkan, A., D. F. Bingul, and M. T. Orbey. 2011. Development of method for the determination of lead in teeth samples by flow injection hydride generation atomic absorption spectrometry in the presence of K3Fe(CN)6, HNO3 and NaBH4. FABAD Journal of Pharmaceutical Sciences 36:181–88.
  • Bora, T., Ç. Aksoy, Z. Tunay, and F. Aydın. 2015. Determination of trace elements in illicit spice samples by using ICP-MS. Microchemical Journal 123:179–84. doi:10.1016/j.microc.2015.06.012
  • Browner, R. F., and A. W. Boorn. 1984. Sample introduction: The Achilles’ heel of atomic spectroscopy. Analytical Chemistry 56:786A–98A. doi:10.1021/ac00271a718
  • Cabrera, C., Y. Madrid, and C. Camara. 1994. Determination of lead in wine, other beverages and fruit slurries by flow injection hydride generation atomic absorption spectrometry with on-line microwave digestion. Journal of Analytical Atomic Spectrometry 9:1423–26. doi:10.1039/ja9940901423
  • Chochorek, A., A. Bobrowski, Z. Kiralyova, and J. Mocak. 2010. ICP-OES determination of select metals in surface water – A metrological study. Polish Journal of Environmental Studies 19:59–64.
  • Dedina, J. 2007. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer. Spectrochimica Acta Part B: Atomic Spectroscopy 62:846–72. doi:10.1016/j.sab.2007.05.002
  • Dedina, J., and D. L. Tsalev. 1995. Hydride generation atomic absorption spectrometry. Chichester, UK: John Wiley and Sons.
  • Demirtaş, İ., S. Bakırdere, and O. Y. Ataman. 2015. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap. Talanta 138:218–24. doi:10.1016/j.talanta.2015.02.044
  • Deng, B., X. Xu, Y. Xiao, P. Zhu, and Y. Wang. 2015. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry. Analytica Chimica Acta 853:179–86. doi:10.1016/j.aca.2014.10.034
  • D’Ulivo, A., J. Dědina, Z. Mester, R. E. Sturgeon, Q. Wang, and B. Welz. 2011. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC technical report). Pure and Applied Chemistry 83:1283–40. doi:10.1351/pac-rep-09-10-03
  • D’Ulivo, A., M. Onor, R. Spiniello, and E. Pitzalis. 2008. Mechanisms involved in chemical vapor generation by aqueous tetrahydroborate(III) derivatization: Role of hexacyanoferrate(III) in plumbane generation. Spectrochimica Acta Part B: Atomic Spectroscopy 63:835–42. doi:10.1016/j.sab.2008.02.007
  • Ertaş, N., Z. Arslan, and J. F. Tyson. 2007. Determination of lead by hydride generation atom trapping flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 23:223–28. doi:10.1039/b712126a
  • Etchie, A. T., T. O. Etchie, G. O. Adewuyi, K. Krishnamurthi, S. Saravanadevi, and S. R. Wate. 2013. Prioritizing hazardous pollutants in two Nigerian water supply schemes: A risk-based approach. Bulletin of the World Health Organization 91:553–61J. doi:10.2471/blt.12.115774
  • Ezer, M. 2010. Continuous flow hydride generation laser induced fluorescence spectrometry for trace determination of lead in water and sediment samples. International Journal of Environmental Analytical Chemistry 90:697–07. doi:10.1080/03067310902898672
  • Ikeda, M., J. Nishibe, S. Hamada, and R. Tujinoa. 1981. Determination of lead at the ng ml−1 level by reduction to plumbane and measurement by inductively-coupled plasma emission spectrometry. Analytica Chimica Acta 125:109–15. doi:10.1016/s0003-2670(01)85055-8
  • Keskin, G., S. Bakırdere, and M. Yaman. 2015. Sensitive determination of lead, cadmium and nickel in soil, water, vegetable and fruit samples using STAT-FAAS after preconcentration with activated carbon. Toxicology and Industrial Health 31:881–89. doi:10.1177/0748233713484650
  • Kratzer, J. 2012. Ultratrace determination of lead by hydride generation in-atomizer trapping atomic absorption spectrometry: Optimization of plumbane generation and analyte preconcentration in a quartz trap-and-atomizer device. Spectrochimica Acta Part B: Atomic Spectroscopy 71–72:40–47. doi:10.1016/j.sab.2012.04.005
  • Kula, İ., Y. Arslan, S. Bakırdere, and O. Y. Ataman. 2008. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l−1 level. Spectrochimica Acta Part B: Atomic Spectroscopy 63:856–60. doi:10.1016/j.sab.2008.03.020
  • Kula, İ., Y. Arslan, S. Bakırdere, S. Titretir, E. Kendüzler, and O. Y. Ataman. 2009. Determination and interference studies of bismuth by tungsten trap hydride generation atomic absorption spectrometry. Talanta 80:127–32. doi:10.1016/j.talanta.2009.06.084
  • Mena, M., C. Cabrera, M. L. Lorenzo, and M. C. Lopez. 1997. Determination of lead contamination in Spanish wines and other alcoholic beverages by flow injection atomic absorption spectrometry. Journal of Agricultural and Food Chemistry 45:1812–15. doi:10.1021/jf960761e
  • Novotný, P., and J. Kratzer. 2013. Hydride generation – In-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry—An interference study. Spectrochimica Acta Part B: Atomic Spectroscopy 79–80:77–81. doi:10.1016/j.sab.2012.12.002
  • Rosa, F. C., F. A. Duarte, J. N.G. Paniz, G. M. Heidrich, M. A.G. Nunes, E. M.M. Flores, and V. L. Dressler. 2015. Dispersive liquid–liquid microextraction: An efficient approach for the extraction of Cd and Pb from honey and determination by flame atomic absorption spectrometry. Microchemical Journal 123:211–17. doi:10.1016/j.microc.2015.06.009
  • Saénz, M., L. Fernández, J. Domínguez, and J. Alvarado. 2010. Electrochemical generation of lead volatile species as a method of sample introduction for lead determination by atomic absorption spectrometry. Electroanalysis 22:2842–47. doi:10.1002/elan.201000333
  • Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. 2012. Heavy metals toxicity and the environment. Clinical and Environmental Toxicology 101:133–164.
  • Thompson, K. C., and D. R. Thomerson. 1974. Atomic-absorption studies on the determination of antimony, arsenic, bismuth, germanium, lead, selenium, tellurium and tin by utilizing the generation of covalent hydrides. The Analyst 99:595–601. doi:10.1039/an9749900595
  • Titretir, S., E. Kendüzler, Y. Arslan, İ. Kula, S. Bakırdere, and O. Y. Ataman. 2008. Determination of antimony by using tungsten trap atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 63:875–79. doi:10.1016/j.sab.2008.03.021
  • United States Environmental Protection Agency [USEPA]. 2014. Drinking water contaminants. http://water.epa.gov/drink/contaminants/index.cfm (Accessed November 2015).
  • United States Environmental Protection Agency [USEPA]. 2015. Human health and lead. http://www.epa.gov/superfund/lead/health.htm (Accessed September, 2015).
  • Welna, M., J. Borkowska-Burnecka, and M. Popko. 2015. Ultrasound-and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples. Talanta 144:953–59. doi:10.1016/j.talanta.2015.07.058
  • World Health Organization. 2015. Lead poisoning and health. http://www.who.int/mediacentre/factsheets/fs379/en/ (Accessed August, 2015).
  • Xu, H., Y. Wu, J. Wang, X. Shang, and X. Jiang. 2013. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry. Journal of Environmental Sciences 25:S45–49. doi:10.1016/s1001-0742(14)60624-0
  • Yilmaz, V., Z. Arslan, and L. Rose. 2013. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): On-line generation of plumbane using potassium hexacyanomanganate(III). Analytica Chimica Acta 761:18–26. doi:10.1016/j.aca.2012.11.039
  • Zhang, S.-Z., H.-B. Han, and Z.-M. Ni. 1989. Determination of lead by hydride generation atomic absorption spectrometry in the presence of nitroso-R salt. Analytica Chimica Acta 221:85–90. doi:10.1016/s0003-2670(00)81941-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.