289
Views
7
CrossRef citations to date
0
Altmetric
MASS SPECTROMETRY

Determination of Dopamine in Cerebrospinal Fluid by MALDI-TOF Mass Spectrometry with a Functionalized Graphene Oxide Matrix

, , , , &
Pages 1847-1861 | Received 30 Jun 2015, Accepted 02 Dec 2015, Published online: 07 Jul 2016

References

  • Abdelhamid, H. N., and H. F. Wu. 2012. A method to detect metal–drug complexes and their interactions with pathogenic bacteria via grapheme nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Analytica Chimica Acta 751:94–104. doi:10.1016/j.aca.2012.09.012.
  • Chen, X. M., G. H. Wu, J. M. Chen, X. Chen, Z. X. Xie, and X. R. Wang. 2011. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. Journal of the American Chemical Society 133:3693–95. doi:10.1021/ja110313d.
  • Dong, X. L., J. S. Cheng, J. H. Li, and Y. S. Wang. 2010. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Analytical Chemistry 82:6208–14. doi:10.1021/ac101022m.
  • Feng, J. J., H. Guo, Y. F. Li, Y. H. Wang, W. Y. Chen, and A. J. Wang. 2013. Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Applied Materials & Interfaces 5:1226–31. doi:10.1021/am400402c.
  • Gulbakan, B., E. Yasun, M. I. Shukoor, Z. Zhu, and M. X. You. 2010. A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. Journal of the American Chemical Society 132:17408–410. doi:10.1021/ja109042w.
  • Hou, S., M. L. Kasner, S. Su, K. Patel, and R. Cuellari. 2010. Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. The Journal of Physical Chemistry C 114:14915–21. doi:10.1021/jp1020593.
  • Hummers, W. S., and R. E. Offeman. 1958. Preparation of graphite oxide. Journal of the American Chemical Society 80:1339.
  • Jiao, J., A. Z. Miao, X. Y. Zhang, Y. Cai, Y. Lu, Y. Zhang, and H. Lu. 2013. Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis. The Analyst 138:1645–48. doi:10.1039/c3an36391k.
  • Jodko-Piorecka, K., and G. Litwinienko. 2013. First experimental evidence of dopamine interactions with negatively charged model biomembranes. ACS Chemical Neuroscience 4:1114–22. doi:10.1021/cn4000633.
  • Kaminska, I., M. R. Das, Y. Coffinier, J. Niedziolka-Jonsson, J. Sobczak, P. Woisel et al. 2012. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Applied Materials & Interfaces 4:1016–20. doi:10.1021/am201664n.
  • Li, Y., X. Li, C. K. Dong, J. Y. Qi, and X. J. Han. 2010. A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 48:3427–33. doi:10.1016/j.carbon.2010.05.038.
  • Liu, Q., M. T. Cheng, and G. B. Jiang. 2013. Mildly oxidized graphene: Facile synthesis, characterization, and application as a matrix in MALDI mass spectrometry. Chemistry – A European Journal 19:5561–65. doi:10.1002/chem.201203791.
  • Liu, J. Y., Y. Liu, M. X. Gao, and X. M. Zhang. 2012. High throughput detection of tetracycline residues in milk using graphene or graphene oxide as MALDI-TOF MS matrix. Journal of the American Society for Mass Spectrometry 23:1424–27. doi:10.1007/s13361-012-0400-4.
  • Liu, Y., Y. Li, J. Y. Liu, C. H. Deng, and X. M. Zhang. 2011a. High throughput enzyme inhibitor screening by functionalized magnetic carbonaceous microspheres and graphene oxide-based MALDI-TOF-MS. Journal of the American Society for Mass Spectrometry 22:2188–98. doi:10.1007/s13361-011-0231-8.
  • Liu, Y., J. Y. Liu, P. Yin, M. X. Gao, C. H. Deng, and X. M. Zhang. 2011b. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. Journal of Mass Spectrometry 46:804–15. doi:10.1002/jms.1952.
  • Liu, Q., J. B. Shi, M. T. Cheng, G. L. Li, D. Cao, and G. B. Jiang. 2012. Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis. Chemical Communications 48:1874–76. doi:10.1039/c2cc16891j.
  • Liu, H., P. Xi, G. Xie, Y. Shi, F. Hou, L. Huang, F. Chen, Z. Zeng, C. Shao, and J. Wang. 2012. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. The Journal of Physical Chemistry C 116:3334–41. doi:10.1021/jp2102226.
  • Lu, J., M. Y. Wang, Y. Li, and C. H. Deng. 2012. Facile synthesis of TiO2/graphene composites for selective enrichment of phosphopeptides. Nanoscale 4:1577–80. doi:10.1039/c2nr11791f.
  • Min, Q. H., X. X. Zhang, X. Q. Chen, S. Y. Li, and J. J Zhu. 2014. N-doped graphene: An alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Analytical Chemistry 86:9122–30. doi:10.1021/ac501943n.
  • Sari, M. M. 2013. Fluorescein isothiocyanate conjugated graphene oxide for detection of dopamine. Materials Chemistry and Physics 138:843–49. doi:10.1016/j.matchemphys.2012.12.069
  • Shang, N. G., P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, et al. 2008. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials 18:3506–14. doi:10.1002/adfm.200800951.
  • Shi, C. Y., J. R. Meng, and C. H. Deng. 2012a. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chemical Communications 48:2418–20. doi:10.1039/c2cc17696c
  • Shi, C. Y., J. R. Meng, and C. H. Deng. 2012b. Facile synthesis of magnetic graphene and carbon nanotube composites as a novel matrix and adsorbent for enrichment and detection of small molecules by MALDI-TOF MS. Journal of Materials Chemistry 22:20778–85. doi:10.1039/c2jm34745h.
  • Uutela, P., L. Karhu, P. Piepponen, M. Käenmäki, R. A. Ketola, and R. Kostiainen. 2009. Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid Chromatography tandem mass spectrometry. Analytical Chemistry 81:427–34. doi:10.1021/ac801846w.
  • Xiang, Q. J., J. G. Yu, and M. Jaroniec. 2012. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society 134:6575–78. doi:10.1021/ja302846n.
  • Xu, L. Q., W. J. Yang, K. G. Neoh, E. T. Kang, and G. D. Fu. 2010. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43:8336–39. doi:10.1021/ma101526k.
  • Zhang, L., Y. Cheng, J. Lei, Y. Liu, Q. Hao, and H. Ju. 2013. Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine. Analytical Chemistry 85:8001–8007. doi:10.1021/ac401894w.
  • Zhang, L. M., S. Diao, Y. F. Nie, K. Yan, N. Liu, and B. Dai. 2011a. Photocatalytic patterning and modification of graphene. Journal of the American Chemical Society 133:2706–13. doi:10.1021/ja109934b.
  • Zhang, J., X. L. Dong, J. S. Cheng, J. H. Li, and Y. S. Wang. 2011b. Efficient analysis of non-polar environmental contaminants by MALDI-TOF MS with graphene as matrix. Journal of the American Society for Mass Spectrometry 22:1294–98. doi:10.1007/s13361-011-0143-7.
  • Zhang, J., X. L. Zheng, and Y. L. Ni. 2015. Selective enrichment and MALDI-TOF MS analysis of small molecule compounds with vicinal diols by boric acid-functionalized graphene oxide. Journal of the American Society for Mass Spectrometry 26:1291–98. doi:10.1007/s13361-015-1162-6.
  • Zhao, J., W. Zhang, P. Sherrell, J. M. Razal, X. F. Huang et al. 2012. Carbon nanotube nanoweb−bioelectrode for highly selective dopamine sensing. ACS Applied Materials & Interfaces 4: 44–48. doi:10.1021/am201508d.
  • Zhou, X. Z., Y. Y. Wei, Q. Y. He, F. Boey, Q. C. Zhang, and H. Zhang. 2010. Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chemical Communications 46:6974–76. doi:10.1039/c0cc01681k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.