377
Views
11
CrossRef citations to date
0
Altmetric
BIOANALYTICAL

Novel Graphene-Modified Poly(styrene-b-isoprene-b-styrene) Enzymatic Fuel Cell with Operation in Plant Leaves

, , &
Pages 2322-2336 | Received 12 Nov 2015, Accepted 14 Jan 2016, Published online: 29 Feb 2016

References

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–54. doi:10.1016/0003-2697(76)90527-3
  • Deng, L., L. Shang, Y. Wang, T. Wang, H. Chen, and S. Dong. 2008. Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell. Electrochemistry Communications 10:1012–15. doi:10.1016/j.elecom.2008.05.001
  • Du Toit, H., and M. Di Lorenzo. 2014. Glucose oxidase directly immobilized onto highly porous gold electrodes for sensing and fuel cell applications. Electrochimica Acta 138:86–92. doi:10.1016/j.electacta.2014.06.074
  • Falk, M., V. Andoralov, M. Silow, M. D. Toscano, and S. Shleev. 2013. Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Analytical Chemistry 85:6342–48. doi:10.1021/ac4006793
  • Flexer, V., and N. Mano. 2010. From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Analytical Chemistry 82:1444–49. doi:10.1021/ac902537h
  • Gregg, B. A., and A. Heller. 1991. Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes. Journal of Physical Chemistry 95:5976–80. doi:10.1021/j100168a047
  • Hazer, B. 1987. Polymerization of vinyl monomers by a new oligo-peroxide: Oligo (adipoyl-5-peroxy-2,5-dimethyl n-hexyl peroxide). Journal of Polymer Science Part A: Polymer Chemistry 25:3349–54. doi:10.1002/pola.1987.080251214
  • Hazer, B. 1990. Cationic polymerization of tetrahydrofuran initiated by di-functional initiators. Synthesis of block copolymers. European Polymer Journal 26:1167–70. doi:10.1016/0014-3057(90)90021-u
  • Hazer, B. 1996. Poly(β-hydroxynonanoate) and polystyrene or poly(methyl methacrylate) graft copolymers: Microstructure characteristics and mechanical and thermal behavior. Macromolecular Chemistry and Physics 197:431–41. doi:10.1002/macp.1996.021970202
  • Hazer, D. B., B. Hazer, and N. Dinçer. 2011. Soft tissue response to the presence of polypropylene-g-poly(ethylene glycol) comb-type graft copolymers containing gold nanoparticles. Journal of Biomedicine and Biotechnology 2011:1–7. doi:10.1155/2011/956169.
  • Hazer, D. B., M. Mut, N. Dinçer, Z. Sarıbaş, B. Hazer, and T. Özgen. 2012. The efficacy of silver-embedded polypropylene-grafted polyethylene glycol-coated ventricular catheters on prevention of shunt catheter infection in rats. Child’s Nervous System 28:839–46. doi:10.1007/s00381-012-1729-5
  • Hirose, J., K. Inoue, H. Sakuragi, M. Kikkawa, M. Minakami, T. Morikawa, H. Iwamoto, and K. Hiromi. 1998. Anions binding to bilirubin oxidase from trachyderma tsunodae K-2593. Inorganica Chimica Acta 273:204–12. doi:10.1016/s0020-1693(97)06183-5
  • Ivanov, I., T. Vidakovic-Koch, and K. Sundmacher. 2010. Recent advances in enzymatic fuel cells: Experiments and modeling. Energies 3:803–46. doi:10.3390/en3040803
  • Jenkins, P., S. Tuurala, A. Vaari, M. Valkiainen, M. Smolander, and D. Leech. 2012. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes. Bio-electrochemistry 87:172–77. doi:10.1016/j.bioelechem.2011.11.011
  • Kalaycı, Ö. A., F. B. Cömert, B. Hazer, T. Atalay, K. Cavicchi, and M. Cakmak. 2010. Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers. Polymer Bulletin 65:215–26. doi:10.1007/s00289-009-0196-y
  • Kang, X., J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin. 2009. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics 25:901–05. doi:10.1016/j.bios.2009.09.004
  • Keleş, E., B. Hazer, and F. B. Cömert. 2013. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition. Materials Science and Engineering C 33:1061–66. doi:10.1016/j.msec.2012.11.029
  • Kilic, M. S., S. Korkut, and B. Hazer. 2014. Electrical energy generation from a novel polypropylene grafted polyethylene glycol based enzymatic fuel cell. Analytical Letters 47:983–95. doi:10.1080/00032719.2013.860536
  • Kilic, M. S., S. Korkut, and B. Hazer. 2015. A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation. Materials Science and Engineering C 47:165–71. doi:10.1016/j.msec.2014.10.077
  • Kilic, M. S., S. Korkut, B. Hazer, and E. Erhan. 2014. Development and operation of gold and cobalt oxide nanoparticles containing polypropylene based enzymatic fuel cell for renewable fuels. Biosensors and Bioelectronics 61:500–05. doi:10.1016/j.bios.2014.05.068
  • Liu, C., S. Alwarappan, Z. Chen, X. Kong, and C. Z. Li. 2010. Membrane less enzymatic biofuel cells based on graphene nano-sheets. Biosensors and Bioelectronics 25:1829–33. doi:10.1016/j.bios.2009.12.012
  • Liu, W. W., S. P. Chai, A. R. Mohamed, and U. Hashim. 2014. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Journal of Industrial and Engineering Chemistry 20:1171–85. doi:10.1016/j.jiec.2013.08.028
  • Liu, Y., and S. Dong. 2007. A biofuel cell with enhanced power output by grape juice. Electrochemistry Communications 9:1423–27. doi:10.1016/j.elecom.2007.01.055
  • Mano, N., F. Mao, and A. Heller. 2003. Characteristics of a miniature compartment-less glucose−O2 biofuel cell and its operation in a living plant. Journal of the American Chemical Society 125: 6588–94. doi:10.1021/ja0346328
  • Matsumoto, T., S. Shimada, K. Yamamoto, T. Tanaka, and A. Kondo. 2013. Two-stage oxidation of glucose by an enzymatic bioanode. Fuel Cells 13:960–64. doi:10.1002/fuce.201300124
  • Nazaruk, E., S. Smolinski, M. Swatko-Ossor, G. Ginalska, J. Fiedurek, J. Rogalski, and R. Bilewicz. 2008. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases. Journal of Power Sources 183:533–38. doi:10.1016/j.jpowsour.2008.05.061
  • Neto, S. A., and A. R. De Andrade. 2013. New energy sources: The enzymatic biofuel cell. Journal of the Brazilian Chemical Society 24:1891–912. doi:10.5935/0103-5053.20130261
  • O’Neill, R. D., S. C. Chang, J. P. Lowry, and C. J. McNeil. 2004. Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. Biosensors and Bioelectronics 19:1521–28. doi:10.1016/j.bios.2003.12.004
  • Pumera, B. 2014. Nanomaterials for electrochemical sensing and bio-sensing. FL: Pan Stand-ford Publishing.
  • Ren, Y., D. Pan, X. Li, F. Fu, Y. Zhao, and X. Wang. 2013. Effect of polyaniline–graphene nano-sheets modified cathode on the performance of sediment microbial fuel cell. Journal of Chemical Technology & Biotechnology 88:1946–50. doi:10.1002/jctb.4146
  • Rengaraj, S., P. Kavanagh, and D. Leech. 2011. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability. Biosensors and Bioelectronics 30:294–99. doi:10.1016/j.bios.2011.09.032
  • Stankovich, M. T., L. M. Schopfer, and V. Massay. 1978. Determination of glucose oxidase oxidation–reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms. Journal of Biological Chemistry 253:4971–79.
  • Stoica, L., N. Dimcheva, Y. Ackermann, K. Karnicka, D. A. Guschin, P. J. Kulesza, J. Rogalski, D. Haltrich, R. Ludwig, L. Gorton, and W. Schuhmann. 2009. Membrane-less biofuel cell based on cellobiose dehydrogenase (anode)/laccase (cathode) wired via specific os-redox polymers. Fuel Cells 9:53–62. doi:10.1002/fuce.200800033
  • Tan, Y., Q. Xie, J. Huang, W. Duan, M. Ma, and S. Yao. 2008. Study on glucose biofuel cells using an electrochemical noise device. Electroanalysis 20:1599–606. doi:10.1002/elan.200804220
  • Wu, B., R. W. Lenz, and B. Hazer. 1999. Polymerization of methyl methacrylate and its copolymerization with ε-caprolactone catalyzed by isobutylalumoxane catalyst. Macromolecules 32:6856–59. doi:10.1021/ma990166o
  • Wu, J. F., M. Q. Xu, and G. C. Zhao. 2010a. Graphene-based modified electrode for the direct electron transfer of cytochrome c and bio-sensing. Electrochemistry Communications 12:175–77. doi:10.1016/j.elecom.2009.11.020
  • Wu, P., Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, and C. Cai. 2010b. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochimica Acta 55:8606–14. doi:10.1016/j.electacta.2010.07.079
  • Yan, Y., W. Zheng, L. Su, and L. Mao. 2006. Carbon-nanotube-based glucose/O2 biofuel cells. Advanced Materials 18:2639–43. doi:10.1002/adma.200600028
  • Yang, X. Y., G. Tian, N. Jiang, and B. L. Su. 2012. Immobilization technology: A sustainable solution for biofuel cell design. Energy & Environmental Science 5:5540–63. doi:10.1039/c1ee02391h
  • Yu, E. H., and K. Scott. 2010. Enzymatic biofuel cells-fabrication of enzyme electrodes. Energies 3:23–42. doi:10.3390/en3010023
  • Yuan, Y., S. Zhou, B. Zhao, L. Zhuang, and Y. Wang. 2012. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bio-resource Technology 116: 453–58. doi:10.1016/j.biortech.2012.03.118
  • Zhuang, L., Y. Yuan, G. Yang, and S. Zhou. 2012. In situ formation of graphene/biofilm composites for enhanced oxygen reduction in bio-cathode microbial fuel cells. Electrochemistry Communications 21:69–72. doi:10.1016/j.elecom.2012.05.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.