285
Views
6
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Synthesis of Polymethylene Blue Nanoparticles and their Application to Label-Free DNA Detection

, , , &
Pages 2728-2740 | Received 24 Sep 2015, Accepted 23 Feb 2016, Published online: 19 Apr 2016

References

  • Ammon, H. P., T. N. Patel, and J. Steinke. 1973. The role of the pentose phosphate shunt in glucose-induced insulin release: In vitro studies with 6-aminonicotinamide, methylene blue, NAD+, NADH, NADP+, NADPH and nicotinamide on isolated pancreatic rat islets. Biochimica et Biophysica Acta (BBA)-General Subjects 297(2):352–67. doi:10.1016/0304-4165(73)90083-4
  • Bai, L., R. Yuan, Y. Chai, Y. Yuan, L. Mao, and Y. Zhuo. 2011. Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt–au NPs and HRP. Analyst 136(9):1840–45. doi:10.1039/C0AN00755B
  • Barsan, M. M., E. M. Pinto, and C. M. Brett. 2008. Electrosynthesis and electrochemical characterization of Phenazine polymers for application in biosensors. Electrochimica Acta 53(11):3973–82. doi:10.1016/j.electacta.2007.10.012
  • Brett, C. M. A., G. Inzelt, and V. Kertesz. 1999. Poly(methylene blue) modified electrode sensor for haemoglobin. Analytica Chimica Acta 385(1):119–23. doi:10.1016/S0003-2670(98)00808-3
  • Bu, F. X., C. J. Du, Q. H. Zhang, and J. S. Jiang. 2014. One-pot synthesis of Prussian blue superparticles from reverse microemulsion. Crystal Engineering Communication 16(15):3113–20. doi:10.1039/C3CE41563E
  • Chang, H., Y. Yuan, N. Shi, and Y. Guan. 2007. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Analytical Chemistry 79(13):5111–15. doi:10.1021/ac070639m
  • Ferapontova, E. E. 2011. Electrochemical indicators for DNA electro-analysis. Current Analytical Chemistry 7(1):51–62. doi:10.2174/157341111793797617
  • Gligor, D., Y. Dilgin, I. C. Popescu, and L. Gorton. 2009. Photoelectrocatalytic oxidation of NADH at a graphite electrode modified with a new polymeric phenothiazine. Electroanalysis 21(3–5):360–67. doi:10.1002/elan.200804397
  • Grabar, K. C., R. G. Freeman, M. B. Hommer, and M. J. Natan. 1995. Preparation and characterization of au colloid monolayers. Analytical Chemistry 67:735–43. doi:10.1021/ac00100a008
  • Gu, H. Y., A. M. Yu, and H. Y. Chen. 2001. Direct electron transfer and characterization of hemoglobin immobilized on a au colloid–cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry 516(1):119–26. doi:10.1016/S0022-0728(01)00669-6
  • Hsieh, K., Y. Xiao, and H. Tom Soh. 2010. Electrochemical DNA detection via exonuclease and target-catalyzed transformation of surface-bound probes. Langmuir 26(12):10392–96. doi:10.1021/la100227s
  • Jia, F., C. Yu, K. Deng, and L. Zhang. 2007. Nanoporous metal (cu, ag, au) films with high surface area: General fabrication and preliminary electrochemical performance. The Journal of Physical Chemistry C 111(24):8424–31. doi:10.1021/jp071815y
  • Kang, D., R. J. White, F. Xia, X. Zuo, A. Vallée-Bélisle, and K. W. Plaxco. 2012. DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors. Nature Publishing Group Asia Materials 4(1):e1. doi:10.1038/am.2012.1
  • Karyakin, A. A., E. E. Karyakina, W. Schuhmann, and H. L. Schmidt. 1999. Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11(8):553–57. doi:10.1002/(SICI)1521-4109(199906)11
  • Khoo, S. B., and F. Chen. 2002. Studies of sol–gel ceramic film incorporating methylene blue on glassy carbon: An electro-catalytic system for the simultaneous determination of ascorbic and uric acids. Analytical Chemistry 74(22):5734–41. doi:10.1021/ac0255882
  • Li, H., Y. Huang, B. Zhang, X. Pan, X. Zhu, and G. Li. 2014. Method to study stoichiometry of protein post-translational modification. Analytical Chemistry 86(24):12138–42. doi:10.1021/ac503077f
  • Luo, F., J. Yin, F. Gao, and L. Wang. 2009. A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy. Microchimica Acta 165(1–2):23–28. doi:10.1007/s00604-008-0091-5
  • Masoomi, M. Y., and A. Morsali. 2013. Morphological study and potential applications of nano metal–organic coordination polymers. Royal Society of Chemistry Advances 3(42):19191–218. doi:10.1039/C3RA43346C
  • Park, J. E., M. Atobe, and T. Fuchigami. 2005. Sonochemical synthesis of conducting polymer–metal nanoparticles nanocomposite. Electrochimica Acta 51(5):849–54. doi:10.1016/j.electacta.2005.04.052
  • Qi, Z. M., D. F. Lu, L. Deng, and N. Matsuda. 2012. Kinetics of competitive adsorption of β-casein and methylene blue on hydrophilic glass. The Journal of Physical Chemistry A 116(9):2141–46. doi:10.1021/jp211626m
  • Ran, X. Q., R. Ran, Y. Q. Chai, C. L. Hong, and K. G. Liu. 2010. Amperometric immunosensor based on Nano-au and nickel hexacyanoferrates nanoparticles for α -fetoprotein detection. Chemical Sensors 626(1):6–13. doi:10.1016/j.jelechem.2008.10.031
  • Roy, S., X. Chen, M. H. Li, Y. Peng, F. Anariba, and Z. Gao. 2009. Mass-produced Nano-gap sensor arrays for ultrasensitive detection of DNA. Journal of the American Chemical Society 131(34):12211–17. doi:10.1021/ja901704t
  • Silber, A., N. Hampp, and W. Schuhmann. 1996. Poly(methylene blue)-modified thick-film gold electrodes for the electro-catalytic oxidation of NADH and their application in glucose biosensors. Biosensors and Bioelectronics 11(3):215–23. doi:10.1016/0956-5663(96)88408-9
  • Sours, R. E., D. A. Fink, and J. A. Swift. 2002. Dyeing uric acid crystals with methylene blue. Journal of the American Chemical Society 124(29):8630–36. doi:10.1021/ja026083w
  • Stoffer, J. O., and T. Bone. 1980. Polymerization in water in oil micro-emulsion systems containing methyl methacrylate. Journal of Dispersion Science and Technology 1(1):37–54. doi:10.1080/01932698008962160
  • Sun, Y., S. Wei, Y. Zhao, X. Hu, and J. Fan. 2012. Characterization of the interaction between 4-(tetrahydro-2-furanmethoxy)-n-octadecyl-1, 8-naphthalimide and human serum albumin by molecular spectroscopy and its analytical application. Applied Spectroscopy 66(4):464–69. doi:10.1366/11-06425
  • Tran, H. V., B. Piro, S. Reisberg, L. D. Tran, H. T. Duc, and M. C. Pham. 2013. Label-free and reagent-less electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosensors and Bioelectronics 49:164–69. doi:10.1016/j.bios.2013.05.007
  • Wang, C., S. Chen, Y. Xiang, W. Li, X. Zhong, X. Che, and J. Li. 2011. Glucose biosensor based on the highly efficient immobilization of glucose oxidase on Prussian blue-gold nanocomposite films. Journal of Molecular Catalysis B: Enzymatic 69(1):1–7. doi:10.1016/j.molcatb.2010.12.002
  • Wang, J., T. Tsuzuki, L. Sun, and X. Wang. 2010. Reverse micro-emulsion-mediated synthesis of SiO2-coated ZnO composite nanoparticles: Multiple cores with tunable shell thickness. ACS Applied Materials & Interfaces 2(4):957–60. doi:10.1021/am100051z
  • Xiao, X., B. Zhou, L. Tan, H. Tang, Y. Zhang, Q. Xie, and S. Yao. 2011. Poly(methylene blue) doped silica nanocomposites with crosslinked cage structure: Electro-polymerization, characterization and catalytic activity for reduction of dissolved oxygen. Electrochimica Acta 56(27):10055–63. doi:10.1016/j.electacta.2011.08.095
  • Xiao, Y., X. Qu, K. W. Plaxco, and A. J. Heeger. 2007. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. Journal of the American Chemical Society 129(39):11896–897. doi:10.1021/ja074218y
  • Yan, Y., M. Zhang, K. Gong, L. Su, Z. Guo, and L. Mao. 2005. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chemistry of Materials 17(13):3457–63. doi:10.1021/cm0504182
  • Yogeswaran, U., and S. M. Chen. 2008. Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sensors and Actuators B: Chemical 130(2):739–49. doi:10.1016/j.snb.2007.10.040
  • Yuan, Y. R., R. Yuan, Y. Q. Chai, Y. Zhuo, and X. M. Miao. 2009. Electrochemical ampere-metric immunoassay for carcinoembryonic antigen based on bi-layer Nano-au and nickel hexa-cyanoferrates nanoparticles modified glassy carbon electrode. Journal of Electroanalytical Chemistry 626(1):6–13. doi:10.1016/j.jelechem.2008.10.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.